• Title/Summary/Keyword: reduced pressure

Search Result 2,670, Processing Time 0.026 seconds

Consolidation of marine clay using electrical vertical drains

  • Shang, J.Q.;Tang, Q.H.;Xu, Y.Q.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.275-289
    • /
    • 2009
  • Electroosmosis (EO) is the movement of water in a porous medium under the influence of a direct current (dc). In past decades, electro-osmosis has been successfully employed in many soil improvement and other geotechnical engineering projects. Metal electrodes, such as steel, copper and aluminum have been used traditionally to conduct current. The shortcoming of these electrodes is that they corrode easily during an EO treatment, which results in reduced effectiveness and environmental concerns. More recently, conductive polymers are developed to replace metal electrodes in EO treatment. Electrical vertical drainages (EVDs) are one of these products under trial. The goal of this study is to assess the performance of EVDs for soil improvement and to further understand the scientific principle of the EO process, including the voltage drop at the soil-EVD interface, electrical current density, polarity reversal, and changes in soil physico-chemical properties generated by electroosmosis. It is found from the study that after 19 days of EO treatment with a constant applied dc electric field intensity of 133 V/m, the soil's moisture content decreased by 28%, the shear strength and pre-consolidation pressure increased more than 400%. It is also found that the current density required triggering the water flow in the soil tested, the Korean Yulchon marine clay, is 0.7 $A/m^2$. The project demonstrates that EVDs can serve as both electrodes and drains for soil improvement in short term. However, the EVDs, as tested, are not suitable for polarity reversal in EO treatment and their service life is limited to only 15 days.

Study on Tip-Vortex Cavitation and Its Noise Characteristics - Effects of Surface Roughness - (타원형날개끝 캐비테이션과 유기소음 특성연구 - 표면거칠기의 영향 -)

  • B.S. Hyun;C.M. Lee;H.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.84-93
    • /
    • 1994
  • The purpose of present study is to investigate the surface roughness on tip-vortex cavitation and its induced noise, emanating from an elliptic wing of NACA 0012 section. Roughness elements of $200{\mu}m$ are applied to the 10% portion of wing tip, and then, the wing tip as well as the leading edge. It is shown from cavitation observation that the cavitation inception is first visible at about half chord downstream of wing tip for most experimental conditions, and developed into the tip-vortex cavitation and finally the fully developed cavitation as cavitation number is decreased. Acoustic noise generated by a tip-vortex cavitation has its frequency range of 3 kHz to 50 kHz, while the fully-developed cavitation at lower cavitation number induces a broad band spectrum. It is also shown that, when the roughness elements are applied to the wing tip and the leading edge, the cavitation characteristics and its induced noise are improved. Moreover, it is appeared that the condition at which the rough surface is at pressure side gives a better result. although its lift-drag ratio is reduced.

  • PDF

Effects of Aspect Ratio on Local Heat/Mass Transfer in Wavy Duct (열교환기 내부 유로 종횡비 변화에 따른 국소 열/물질전달 특성 고찰)

  • Jang In Hyuk;Hwang Sang Dong;Cho Hyung Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.569-580
    • /
    • 2005
  • The present study investigates the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger. The effects of duct aspect ratio and flow velocity on the heat/mass transfer are investigated. Local heat/mass transfer coefficients on the corrugated duct sidewall are determined using a naphthalene sublimation technique. The aspect ratios of the wavy duct are 7.3, 4.7 and 1.8 with the corrugation angle of $145\Omega$. The Reynolds numbers, based on the duct hydraulic diameter, vary from 300 to 3,000. The results show that at the low Re(Re $\leq$ 1000) the secondary vortices called Taylor-Gortler vortices perpendicular to the main flow direction are generated due to effect of duct curvature. By these secondary vortices, non-uniform heat/mass transfer coefficients distributions appear. As the aspect ratio decreases, the number of cells formed by secondary vortices are reduced and secondary vortices and comer vortices mix due to decreased aspect ratio at Re$\leq$1000. At Re >1000, the effects of corner vortices become stronger. The average Sh for the aspect ratio of 7.3 and 4.7 are almost same. But at the small aspect ratio of 1.8, the average Sh decreases due to decreased aspect ratio. More pumping power (pressure loss) is required for the larger aspect ratio due to the higher flow instability.

Management of complex surgical wounds of the back: identifying an evidence-based approach

  • Zolper, Elizabeth G.;Saleem, Meher A.;Kim, Kevin G.;Mishu, Mark D.;Sher, Sarah R.;Attinger, Christopher E.;Fan, Kenneth L.;Evans, Karen K.
    • Archives of Plastic Surgery
    • /
    • v.48 no.6
    • /
    • pp.599-606
    • /
    • 2021
  • Background Postoperative dehiscence and surgical site infection after spinal surgery can carry serious morbidity. Multidisciplinary involvement of plastic surgery is essential to minimizing morbidity and achieving definitive closure. However, a standardized approach is lacking. The aim of this study was to identify effective reconstructive interventions for the basis of an evidence-based management protocol. Methods A retrospective review was performed at a single tertiary institution for 45 patients who required 53 reconstruction procedures with plastic surgery for wounds secondary to spinal surgery from 2010 to 2019. Statistical analysis was performed for demographics, comorbidities, and treatment methods. Primary outcomes were postoperative complications, including dehiscence, seroma, and infection. The secondary outcome was time to healing. Results The overall complication rate was 32%, with dehiscence occurring in 17%, seroma in 15% and infection in 11% of cases. Median follow-up was 10 months (interquartile range, 4-23). Use of antibiotic beads did not affect rate of infection occurrence after wound closure (P=0.146). Use of incisional negative pressure wound therapy (iNPWT) was significant for reduced time to healing (P=0.001). Patients treated without iNPWT healed at median of 67.5 days while the patients who received iNPWT healed in 33 days. Demographics and comorbidities between these two groups were similar. Conclusions This data provides groundwork for an evidence-based approach to soft tissue reconstruction and management of dehiscence after spinal surgery. Timely involvement of plastic surgery in high-risk patients and utilization of evidence-based interventions such as iNPWT are essential for improving outcomes in this population.

Carbon-Encapsulated Ni Catalysts for CO2 Methanation (탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응)

  • Kim, Hye Jeong;Kim, Seung Bo;Kim, Dong Hyun;Youn, Jae-Rang;Kim, Min-Jae;Jeon, Sang Goo;Lee, Gyoung-Ja;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

Stick-slip in Chemical Mechanical Polishing Using Multi-Particle Simulation Models (다수의 연마입자를 고려한 CMP 공정의 Stick-Slip 고찰)

  • Jung, Soyoung;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.279-283
    • /
    • 2018
  • In this study, we investigate the behavior of abrasive particles and change of the stick-slip pattern according to chemical mechanical polishing (CMP) process parameters when a large number of abrasive particles are fixed on a pad. The CMP process is simulated using the finite element method. In the simulation, the abrasive grains are composed of those used in the actual CMP process. Considering the cohesion of the abrasive grains with the start of the CMP process, abrasive particles with various sizes are fixed onto the pad at different intervals so that stick-slip could occur. In this analysis, we determine that when the abrasive particle size is relatively large, the stick-slip period does not change as the pressure increases while the moving speed is constant. However, if the size of the abrasive grains is relatively small, the amount of deformation of the grains increases due to the elasticity of the pad. Therefore, the stick-slip pattern may not be observed. As the number of abrasive particles increases, the stick-slip period and displacement decrease. This is consistent with the decrease in the von Mises yield stress value on the surface of the wafer as the number of abrasive grains increases. We determine that when the number of the abrasive grains increases, the polishing rate, and characteristics are improved, and scratches are reduced. Moreover, we establish that the period of stick-slip increases and the change of the stick-slip size was not large when the abrasive particle size was relatively small.

Measurement of outgassing rates of Kevlar and S-Glass materials used in torque tubes of High Tc Superconducting (HTS) Motors

  • Thadela, S.;Muralidhar, BVAS;Kalyani, B;Choudhury, UK;Yadav, SN;Rao, V.V.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.11-15
    • /
    • 2018
  • Torque tubes in High Temperature Superconducting (HTS) motor transfer torque from superconducting field winding rotor to the room temperature shaft. It should have minimum heat conduction property for minimizing the load on cryo-refrigerator. Generally, these torque tubes are made with stainless steel material because of high strength, very low outgassing and low thermal contraction properties at cryogenic temperatures and vacuum conditions. With recent developments in composite materials, these torque tubes could be made of composites such as Kevlar and S-Glass, which have the required properties like high strength and low thermal conductivity at cryogenic temperatures, but with a reduced weight. Development and testing of torque tubes made of these composites for HTS motor are taken up at Bharat Heavy Electricals Limited (BHEL), Hyderabad in collaboration with Central Institute of Plastics and Engineering Technology (CIPET), Chennai and Indian Institute of Technology (IIT), Kharagpur. As these materials are subjected to vacuum, it is important to measure their outgassing rates under vacuum conditions before manufacturing prototype torque tubes. The present study focusses on the outgassing characteristics of Kevlar and S-Glass, using an Outgassing Measurement System (OMS), developed at IIT Kharagpur. The OMS facility works under vacuum environment, in which the test samples are exposed to vacuum conditions over a sufficient period of time. The outgassing measurements for the composite samples were obtained using pressure-rise technique. These studies are useful to quantify the outgassing rate of composite materials under vacuum conditions and to suggest them for manufacturing composite torque tubes used in HTS motors.

Changes of Bax, Bcl-2, CCR-2, MCP-1, and TGF-β1 genes in the left ventricle of spontaneously hypertensive rat after losartan treatment

  • Lee, Hyeryon;Kim, Kwan Chang;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.3
    • /
    • pp.95-101
    • /
    • 2019
  • Purpose: Increased apoptosis was recently found in the hypertrophied left ventricle of spontaneously hypertensive rats (SHRs). Although the available evidence suggests that apoptosis can be induced in cardiac cells by various insults including pressure overload, cardiac apoptosis appears to result from an exaggerated local production of angiotensin in adult SHRs. Altered expressions of Bcl associated X (Bax), Bcl-2, chemokine receptor (CCR)-2, monocyte chemoattractant protein (MCP)-1, transforming growth factor $(TGF)-{\beta}1$, phosphorylated extracellular signal-regulated kinases (PERK), and connexin 43 proteins, and kallikrein mRNA were investigated to explore the effects of losartan on the SHR model. Methods: Twelve-week-old male rats were grouped as follows: control (C), SHR (hypertension: H), and losartan (L; SHRs were treated with losartan [10 mg/kg/day] for 5 weeks). Western blot and reverse transcription polymerase chain reaction assays were performed. Results: Expression of Bax, CCR-2, MCP-1, $TGF-{\beta}1$, PERK, and connexin 43 proteins, and kallikrein mRNA was significantly increased in the H group compared to that in the C group at weeks 3 and 5. Expression of Bax, CCR-2, MCP-1, $TGF-{\beta}1$, and connexin 43 proteins and kallikrein mRNA was significantly decreased after losartan treatment at week 5. PERK protein expression was significantly decreased after losartan treatment at weeks 3 and 5. Bcl-2 protein expression was significantly decreased in the H group compared to that in the C group at weeks 3 and 5. Conclusion: Losartan treatment reduced expression of Bax, CCR-2, MCP-1, $TGF-{\beta}1$, PERK, and connexin 43 proteins, and kallikrein mRNA in SHRs, along with decreased inflammation and apoptosis.

Differential effects of saturated and unsaturated fatty acids on vascular reactivity in isolated mesenteric and femoral arteries of rats

  • Vorn, Rany;Yoo, Hae Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.403-409
    • /
    • 2019
  • Free fatty acid (FFA) intake regulates blood pressure and vascular reactivity but its direct effect on contractility of systemic arteries is not well understood. We investigated the effects of saturated fatty acid (SFA, palmitic acid), polyunsaturated fatty acid (PUFA, linoleic acid), and monounsaturated fatty acid (MUFA, oleic acid) on the contractility of isolated mesenteric (MA) and deep femoral arteries (DFA) of Sprague-Dawley rats. Isolated MA and DFA were mounted on a dual wire myograph and phenylephrine (PhE, $1-10{\mu}M$) concentration-dependent contraction was obtained with or without FFAs. Incubation with $100{\mu}M$ of palmitic acid significantly increased PhE-induced contraction in both arteries. In MA, treatment with $100{\mu}M$ of linoleic acid decreased $1{\mu}M$ PhE-induced contraction while increasing the response to higher PhE concentrations. In DFA, linoleic acid slightly decreased PhE-induced contraction while $200{\mu}M$ oleic acid significantly decreased it. In MA, oleic acid reduced contraction at low PhE concentration (1 and $2{\mu}M$) while increasing it at $10{\mu}M$ PhE. Perplexingly, depolarization by 40 mM KCl-induced contraction of MA was commonly enhanced by the three fatty acids. The 40 mM KCl-contraction of DFA was also augmented by linoleic and oleic acids while not affected by palmitic acid. SFA persistently increased alpha-adrenergic contraction of systemic arteries whereas PUFA and MUFA attenuated PhE-induced contraction of skeletal arteries. PUFA and MUFA concentration-dependent dual effects on MA suggest differential mechanisms depending on the types of arteries. Further studies are needed to elucidate underlying mechanisms of the various effects of FFA on systemic arteries.

Effect of Intravenous Lipid Emulsion on Clozapine Acute Toxicity in Rats

  • Yousefsani, Bahareh Sadat;Mohajeri, Seyed Ahmad;Moshiri, Mohammad;Jafarian, Amir Hossein;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.22 no.3
    • /
    • pp.147-153
    • /
    • 2019
  • Objectives: Many studies have been reported the efficacy of intravenous lipid emulsion (ILE) as an antidote on acute lipophilic drug toxicity. Clozapine, highly lipophilic dibenzodiazepine neuroleptics, is an important medication in the schizophrenia therapy regimen. Acute intoxication with antipsychotics is one of the main reasons for the referral of poisoned patients to the hospital. We expected that ILE could be used for the therapy of acute clozapine intoxicated patients. Methods: We used two groups of consisting of six male rats. Both groups received a toxic dose of clozapine (40 mg/kg) intravenously, via the tail vein. After 15 minutes, they were treated with intravenous infusion of 18.6 mg/kg normal saline (NS group), or 18.6 mg/kg ILE 20% (ILE group). We evaluated blood pressure (BP) and heart rate by power lab apparatus through the tail artery, ataxia by a rat rotary circle, seizure scores and death in multiple times after starting clozapine administration. For biochemical and pathological evaluations the samples of tissue and blood were taken. Results: Our results demonstrated that ILE 20% could return hypotension-induced clozapine better than normal saline. Furthermore, ataxia and seizure have rectified more rapidly and deaths reduced. Clozapine administration causes pancreatitis and lung injury but fat emulsion did not show an optimal effect on tissue damages caused by clozapine toxicity. Conclusion: In conclusion, ILE can remove toxic signs of clozapine same as other lipophilic medicines, however, clinical uses of ILE for this intention requires more appraisement to determine the precise implication and safety.