• Title/Summary/Keyword: reduced order reference model

검색결과 41건 처리시간 0.023초

An Experimental Study on IMP-based and DOB-based Controllers for Position Control of a BLDC Motor System

  • Dong Cheol Song;Seung Tae Hwang;Nebiyeleul Daniel Amare;Young Ik Son
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.92-99
    • /
    • 2024
  • As semiconductor processes require several nanometers precision, the importance of motor control is increasing in semiconductor equipment. Due to unpredictable uncertainties such as friction and mechanical vibrations achieving precise position control in semiconductor processes is challenging. The internal model principle-based controller is a control technique that ensures robust steady-state performance by incorporating a model of the reference and disturbance. The disturbance observer-based controller is a prominent robust control technique implemented to cope with various nonlinearities and uncertainties. Provided that the two controllers can be designed to exhibit equivalent performance under certain conditions, this paper demonstrates through experiments that they yield identical results for the case of a BLDC position control problem. The experimental results also indicate that they can offer enhanced robustness compared with the conventional PID controller in the presence of a time-varying disturbance.

  • PDF

Analysis of Proportional Control for Grid Connected Inverter With LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.247-249
    • /
    • 2008
  • There are many types of grid-connected inverter controllers; Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. However, SRF-based controller has a complex algorithm to apply in real application such as digital processor. Resonant controller is also reduced zero-steady state error, but its transfer function has a high order. In this paper, a simple proportional control is applied for grid connected inverter with LCL filter. LCL filter is a third order system. Applying a simple proportional controller is not increased the order of closed loop transfer function. By this technique, the single phase model is easily obtained. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

AnActive Damping Scheme Based on a Second Order Resonant Integrator for LCL-Type Grid-Connected Converters

  • Chen, Chen;Xiong, Jian;Zhang, Kai
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1058-1070
    • /
    • 2017
  • This paper proposes a novel active damping scheme to suppress LCL-filter resonance with only grid-current feedback control in grid-connected voltage-source converters. The idea comes from the concept of the model reference adaptive control (MRAC). A detailed theoretical derivation is given, and the effectiveness of this method is explained based on its physical nature. According to the control structure of this method, the active damping compensator, which is essentially a second order resonant integrator (SORI) filter, provides an effective solution to damp LCL resonance and to eliminate the need for additional sensors. Compared with extra feedback methods, the cost and complexity are reduced. A straightforward tuning procedure for the active damping method has been presented. A stability analysis is illustrated in the discrete domain while considering a one-step delay. Finally, experimental results are presented to validate the analysis and to demonstrate the good performance of the proposed method.

비선형 모델기반 SRM의 고효율 직접 순시토크 제어 (A High Efficiency Direct Instantaneous Torque Control of SRM based on the Nonlinear Model)

  • 안진우
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1047-1054
    • /
    • 2007
  • This paper presents a high efficiency direct instantaneous torque control (DITC) of Switched Reluctance Motor(SRM) based on the nonlinear model. The DITC method can reduce the high inherent torque ripple of SRM drive system, but drive efficiency is somewhat low due to the high current and switching loss during commutations. In order to reduce a torque ripple, a fast torque reference trajectory is selected at every instantaneous rotor position. Based on the nonlinear model of SRM, the developing torque by one phase is fixed and the other phase is regulated for minimum switchings of phase switch and variation of torque. The switching during commutation can be reduced and fast commutation can be obtained in the proposed method. As a result, drive efficiency could be improved as well as torque ripple reduction. The validity of proposed method is verified by computer simulations and comparative experiments.

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

몬테카를로 시뮬레이션을 이용한 다면 공간의 조도계산 (The Calculation of Illuminance Distribution in Complex Interior using Montecarlo Simulation)

  • 김희철;김훈;지철근
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제7권6호
    • /
    • pp.27-33
    • /
    • 1993
  • 본 논문에서는 몬테카를로 시뮬레이션을 이용하여 복잡한 다면 실내공간에서 조도분포를 예측하는 방법을 제안하였다. 광원으로부터 방사하는 빛을 배광분포에 따른 가중치를 가지고 진행하는 입자로 가정하였으며 광원에서 방출된 빛의 경로를 추적하여 반사면과의 교점을 구한다. 그리고 반사면의 반사율을 고려하여 이자가 반사 또는 흡수될 것인가를 판단하고 그 입자가 흡수될 때까지 입자의 진행을 반복한다. 무수히 많은 입자에 대해 위와 같은 과정을 반복하면 실내면의 조도분포를 얻을 수 있다. 보다 세밀한 측정을 위하여 각 실내면은 매우 작은 미소면적으로 분할하였다. 그리고, 실제공간에서도 응용될 수 있도록 실제의 공간과 유사한 다면 실내공간에 대해서 시뮬레이션을 하였으며, 조도분포에 따라 이차원의 등조도 곡선과 삼차원의 조도분포곡선을 그렸다. 실제로 모델공간을 제작하여 조도를 측정해 본 결과, 실험치와 계산치의 오차가 평균 2.3% 이내로 되었다.

  • PDF

SUV 차량의 전륜 및 후륜 조향 장치를 이용한 통합운동제어시스템 설계 (Development of Integrated Dynamics Control System of SUV Vehicle with Front and Rear Steering System)

  • 송정훈
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.31-37
    • /
    • 2018
  • In order to improve stability and controllability of SUV vehicle, Integrated Dynamics Control system with Steering system (IDCS) was developed. Eight degree of freedom vehicle model and front and rear steering system model were used to design IDCS system. It also employs Fuzzy logic control method to design integrate control system. The performance of IDCS was evaluated with two road conditions and several driving conditions. The result shows that SUV vehicle with IDCS tracked the reference yaw rate under all tested conditions. IDCS reduced the body slip angle also. It represents IDCS improves vehicle stability and steerability.

WiFi와 BLE 를 이용한 Log-Distance Path Loss Model 기반 Fingerprint Radio map 알고리즘 (Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE)

  • 성주현;권택구;이승희;김정우;서동환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.62-68
    • /
    • 2016
  • 실내 위치인식 기술 중 하나인 WiFi Fingerprint는 기존의 WiFi access point(AP)의 거리에 따른 신호 세기를 활용하여 위치를 추정하는 편리함 때문에 많은 연구가 이루어지고 있다. 하지만 이 방식은 Radio map에 저장된 Reference point에 의존하기 때문에 다른 방식에 비해 위치의 분해능이 떨어지고 연산량이 많다. 본 논문에서는 이러한 문제를 해결하기 위하여 WiFi와 BLE를 융합한 Log-Distance Path Loss Model 기반의 Radio map 설계 알고리즘을 제안한다. 제안한 알고리즘은 Log-Distance Path Loss Model이 적용된 변수 값을 추출하여 Radio map을 설계하는 방식이며 Median Filter를 적용하여 오차를 개선하였다. 기존 Fingerprint와 비교하여 실험한 결과, 위치의 정확도는 평균 2.747m에서 2.112m로 0.635m 감소되는 것을 확인하였으며 연산량은 AP 환경에 따라 33%이상 감소하는 것을 확인하였다.

Simulation and Model Validation of a Pneumatic Conveying Drying for Wood Dust Particles

  • Bhattarai, Sujala;Kim, Dae-Hyun;Oh, Jae-Heun
    • Journal of Biosystems Engineering
    • /
    • 제37권2호
    • /
    • pp.82-89
    • /
    • 2012
  • Purpose: The simulation model of a pneumatic conveying drying (PCD) for sawdust was developed and verified with the experiments. Method: The thermal behavior and mass transfer of a PCD were modeled and investigated by comparing the experimental results given by a reference (Kamei et al. 1952) to validate the model. Momentum, energy and mass balance, one dimensional first order ordinary differential equations, were coded and solved into Matlab V. 7.1.0 (2009). Results: The simulation results showed that the moisture content reduced from 194% to 40% (dry basis), air temperature decreased from $512^{\circ}C$ to $128^{\circ}C$ with the particle residence time of 0.7 seconds. The statistical indicators, root mean square error and R-squared, were calculated to be 0.079, and 0.998, respectively, between the measured and predicted values of moisture content. The relative error between the measured and predicted values of the final pressured drop, air temperature, and air velocity were only 8.96%, 0.39% and 1.05% respectively. Conclusions: The predicted moisture content, final temperature, and pressure drop values were in good agreement with the experimental results. The developed model can be used for design and estimation of PCD system for drying of wood dust particles.

Current Conservation Factors for Consistent One-Dimensional Neutronics Modeling

  • Lee, Kibog;Joo, Han-Gyu;Cho, Byung-Oh;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.235-243
    • /
    • 2000
  • A one-dimensional neutronics formulation is established within the framework of the nonlinear analytic nodal method such that it can result in consistent one-dimensional models that produce the same axial information as their corresponding reference three-dimension81 models. Consistency is achieved by conserving axial interface currents as well as the planar reaction rates of the three-dimensional case. For current conservation, flux discontinuity is introduced in the solution of the two-node problem. The degree of discontinuity, named the current conservation factor, is determined such that the surface averaged axial current of the reference three-dimensional case can be retrieved from the two-node calculation involving the radially collapsed group constants and the discontinuity factor. The current conservation factors are derived from the analytic nodal method and various core configurations are analyzed to show that the errors in K-eff and power distributions can be reduced by a order of magnitude by the use of the current conservation factor with no significant computational overhead.

  • PDF