• 제목/요약/키워드: reduced model

검색결과 6,416건 처리시간 0.032초

국방 AI 소요의 중복 최적화를 위한 AI 능력(Capability)의 역할 개념모델 연구 (A study on a conceptual model of AI Capability's role to optimize duplication of defense AI requirements)

  • 박승규;이중윤;이주연
    • 시스템엔지니어링학술지
    • /
    • 제19권1호
    • /
    • pp.91-106
    • /
    • 2023
  • Multidimensional efforts such as budgeting, organizing, and institutionalizing are being carried out for the adoption of defense AI. However, there is little interest in eliminating duplication of defense resources that may occur during the AI adoption. In this study, we propose a theoretical conceptual model to optimize duplication of AI technology that may occur during the AI adoption in the vast defense field. For a systematic approach, the JCA of the US DoD and system abstraction method are applied, and the IMO logical structure is used to decompose AI requirements and identify duplication. As a result of analyzing the effectiveness of our conceptual model through six example defense AI requirements, it was found that the amount of requirements of data and AI technologies could be reduced by up to 41.7% and 70%, respectively, and estimated costs could be reduced by up to 35.5%.

주파수응답에 대한 투영기반 모델차수축소법의 비교 (Comparison of Projection-Based Model Order Reduction for Frequency Responses)

  • 원보름;한정삼
    • 대한기계학회논문집A
    • /
    • 제38권9호
    • /
    • pp.933-941
    • /
    • 2014
  • 본 논문에서는 대표적 투영기반 모델차수축소법인 크리로프 부공간 모델차수축소법(KSM)과 모드중첩법(MTM)을 고려하여 주파수응답해석에 대한 수치적 정확도와 효율성을 비교하였다. 두 모델차수축소법의 수치 정확도 비교를 위하여 주파수응답해석 결과, 축소차수 및 관심주파수에 따른 상대오차를 고려하였으며 이후에 오차수렴지표를 통한 자동적인 축소차수의 결정이 가능 여부를 확인하였다. 효율성 비교를 위해서는 각 축소모델의 주파수응답 해석시간 및 축소차수에 따른 변환행렬 생성시간을 비교하였다. 자동차 현가장치에 대한 유한요소모델을 적용예제로 선정하여 수치 비교를 수행하였다.

CAI 엔진 해석을 위한 multi-zone 연소 모델의 개발 (Development of a Multi-zone Combustion Model for the Analysis of CAI Engines)

  • 이경현;임재만;김용래;민경덕
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.74-80
    • /
    • 2008
  • A combustion of CAI engine is purely dominated by fuel chemical reactions. In order to simulate the combustion of CAI engine, it should be considered the effect of fuel components and chemical kinetics. So it needs enormous computational power. To overcome this problem reduced problem of needing massive computational power, chemical kinetic mechanism and multi-zone method is proposed here in this paper. A reduced chemical kinetic mechanism for a gasoline surrogate was used in this study for a CAI combustion. This gasoline surrogate was modeled as a blend of iso-octane, n-heptane, and toluene. For the analysis of CAI combustion, a multi-zone method as combustion model for a CAI engine was developed and incorporated into the computational fluid dynamics code, STAR-CD, for computing efficiency. This coupled multi-zone model can calculate 3 dimensional computational fluid dynamics and multi-zoned chemical reaction simultaneously in one time step. In other words, every computational cell interacts with the adjacent cells during the chemical reaction process. It can enhance the reality of multi-zone model. A greatly time-saving and yet still relatively accurate CAI combustion simulation model based on the above mentioned two efficient methodologies, is thus proposed.

송전 선로 극저주파 자기장 저감지수(FRF) 특성 해석 (Analysis of ELF Magnetic Field Reduction Factor of Electric Power Transmission Line)

  • 명성호;조연규;이동일;임윤석
    • 한국전자파학회논문지
    • /
    • 제17권11호
    • /
    • pp.1132-1142
    • /
    • 2006
  • 본 연구는 송전 선로 여러 가지 유형의 극저주파 자기장 저감 적용 모델을 조사하고 그 효과를 분석하였다. 본 연구에서는 154 kV 수평 배열 송전 선로를 기본으로 하여 적용 가능한 다양한 자기장 저감 모델에 대하여 적용시 얻게 되는 자기장 저감지수(Field Reduction Factor)를 검토하였다. 그 결과 compact 모델 채용시에는 상간거리 compact화 비율과 자기장 저감지수가 거의 비례하였으며, diamond 모델 및 transposed 선로 배치의 경우는 50 %에 근접한 자기장 저감이 가능하였다. 배전 선로에 적용이 가능한 삼각형 배열은 33 % 정도, 2회선 split는 50 % 정도 저감 효과가 나타나는 것으로 분석되었으며 수평 multi split 모델의 경우는 80 %까지 자기장 저감을 얻을 수 있었다.

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.

SEV용 IPMSM의 토크리플 및 철손 저감을 위한 회전자 형상 설계에 관한 연구 (A Study on Rotor Shape Design to Reduce Torque Ripple and Core Loss of IPMSM for SEV)

  • 강정인;정태욱
    • 한국산업융합학회 논문집
    • /
    • 제26권2_2호
    • /
    • pp.327-332
    • /
    • 2023
  • As interest in eco-friendly and fuel-efficient electric vehicles has increased globally, there has also been a growing interest in the efficiency, vibration, and noise of motors for electric vehicles Electric vehicles generally have significantly lower driving ranges per charge compared to the maximum driving range per fueling of internal combustion engine vehicles. Additionally, there are issues with various vibrations and noise generated by the motor that can cause discomfort for passengers. Therefore, research is necessary to reduce losses, vibration, and noise of the motor to improve the driving range of electric vehicles. IPMSM with a purchased design can obtain additional reluctance torque by utilizing the difference in inductance between the d and q axes. However, due to this reluctance torque, torque ripple occurs larger than other motors. The increase in torque ripple also increases noise and vibration. Since the reluctance torque, which is the main cause of torque ripple, is determined by the shape of the motor components, torque ripple can be reduced through shape optimization. In this paper, a rotor shape for reducing torque ripple and core loss that causes vibration, noise, and efficiency to decrease of IPMSM for electric vehicles was proposed. Optimization design was carried out by changing the shape of the q-axis path of the rotor to reduce the difference in inductance of the d and q-axis of the rotor. Finally, in order to verify the validity of the design variables derived through the optimal design, the original model and the improved model were compared through the FEM. Compared to the original model, the improved model's torque verifying ripple was reduced by about 62% and core loss was reduced by about 29%, the superiority of the improved model.

A Model Comparison Method for Hierarchical Loglinear Models

  • Hyun Jip Choi;Chong Sun Hong
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.31-37
    • /
    • 1996
  • A hierarchical loglinear model comparison method is developed which is based on the well kmown partitioned likelihood ratio statistiss. For any paels, we can regard the difference of the geedness of fit statistics as the variation explained by a full model, and develop a partial test to compare a full model with a reduced model in that hierarchy. Note that this has similar arguments as that of the regression analysis.

  • PDF

Periodic-Cell Simulations for the Microscopic Damage and Strength Properties of Discontinuous Carbon Fiber-Reinforced Plastic Composites

  • Nishikawa, M.;Okabe, T.;Takeda, N.
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.77-93
    • /
    • 2009
  • This paper investigated the damage transition mechanism between the fiber-breaking mode and the fiber-avoiding crack mode when the fiber-length is reduced in the unidirectional discontinuous carbon fiber-reinforced-plastics (CFRP) composites. The critical fiber-length for the transition is a key parameter for the manufacturing of flexible and high-strength CFRP composites with thermoset resin, because below this limit, we cannot take full advantage of the superior strength properties of fibers. For this discussion, we presented a numerical model for the microscopic damage and fracture of unidirectional discontinuous fiber-reinforced plastics. The model addressed the microscopic damage generated in these composites; the matrix crack with continuum damage mechanics model and the fiber breakage with the Weibull model for fiber strengths. With this numerical model, the damage transition behavior was discussed when the fiber length was varied. The comparison revealed that the length of discontinuous fibers in composites influences the formation and growth of the cluster of fiber-end damage, which causes the damage mode transition. Since the composite strength is significantly reduced below the critical fiber-length for the transition to fiber-avoiding crack mode, we should understand the damage mode transition appropriately with the analysis on the cluster growth of fiber-end damage.

Effects of (-)-Sesamin on Memory Deficits in MPTP-lesioned Mouse Model of Parkinson's Disease

  • Zhao, Ting Ting;Shin, Keon Sung;Lee, Myung Koo
    • Natural Product Sciences
    • /
    • 제22권4호
    • /
    • pp.246-251
    • /
    • 2016
  • This study investigated the effects of (-)-sesamin on memory deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model of Parkinson's disease (PD). MPTP lesion (30 mg/kg/day, 5 days) in mice showed memory deficits including habit learning memory and spatial memory. However, treatment with (-)-sesamin (25 and 50 mg/kg) for 21 days ameliorated memory deficits in MPTP-lesioned mouse model of PD: (-)-sesamin at both doses improved decreases in the retention latency time of the passive avoidance test and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, improved the decreased transfer latency time of the elevated plus-maze test, reduced the increased expression of N-methyl-D-aspartate (NMDA) receptor, and increased the reduced phosphorylation of extracellular signal-regulated kinase (ERK1/2) and cyclic AMP-response element binding protein (CREB). These results suggest that (-)-sesamin has protective effects on both habit learning memory and spatial memory deficits via the dopaminergic neurons and NMDA receptor-ERK1/2-CREB system in MPTP-lesioned mouse model of PD, respectively. Therefore, (-)-sesamin may serve as an adjuvant phytonutrient for memory deficits in PD patients.

Assessing Bank Competition in Nepal Using Panzar-Rosse Model

  • BUDHATHOKI, Prem Bahadur;RAI, Chandra Kumar;RAI, Arjun
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.759-768
    • /
    • 2020
  • The purpose of this study is to assess the state of competition in Nepalese banking over the period from 2010 to 2019. This study employs panel data and a non-structural Panzar-Rosse model to measure the degree of competition in the Nepalese banking industry. The first reduced-form equation is applied to gauge competition, and the second model is used to test the long-run equilibrium in the banking market. The finding reveals that the Nepalese banking market is equilibrium in the long-run. It implies that the factor prices do not affect ROA in the long-run. The result of the H-statistic shows that the Nepalese banking system is operating under the state of perfect competition and is shifted from monopolistic competition to perfect competition. The reduced-form model reveals that the interest income is positive and significantly affected by factor prices. Similarly, the macroeconomic variable GDP growth is positively related to interest income. On the contrary, the bank's specific factors risk and the number of bank branches are inversely associated with the regressand. The outcomes of the study may be advantageous to the policymakers, especially to Nepal Rastra Bank to implement monetary policy and M&A policy for the stability and growth of the financial system of Nepal.