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Abstract

This paper investigated the damage transition mechanism between the fiber-breaking mode and the fiber-
avoiding crack mode when the fiber-length is reduced in the unidirectional discontinuous carbon fiber-
reinforced-plastics (CFRP) composites. The critical fiber-length for the transition is a key parameter for
the manufacturing of flexible and high-strength CFRP composites with thermoset resin, because below this
limit, we cannot take full advantage of the superior strength properties of fibers. For this discussion, we
presented a numerical model for the microscopic damage and fracture of unidirectional discontinuous fiber-
reinforced plastics. The model addressed the microscopic damage generated in these composites; the matrix
crack with continuum damage mechanics model and the fiber breakage with the Weibull model for fiber
strengths. With this numerical model, the damage transition behavior was discussed when the fiber length
was varied. The comparison revealed that the length of discontinuous fibers in composites influences the
formation and growth of the cluster of fiber-end damage, which causes the damage mode transition. Since
the composite strength is significantly reduced below the critical fiber-length for the transition to fiber-
avoiding crack mode, we should understand the damage mode transition appropriately with the analysis on
the cluster growth of fiber-end damage.
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1. Introduction

Carbon fiber-reinforced plastics (CFRP) are currently being investigated for use as
general industrial materials, such as in automobile applications. While continuous
fiber-reinforced composites are frequently used for recent aerospace applications,
in automobile applications, discontinuous fiber-reinforced composites have been in-
creasingly applied to structural components because their flexibility is preferable to
form into the complex-shaped structure. However, in general, CFRP made of short
fibers suffers from severe matrix crack, which extends avoiding fibers (e.g., [1]),
and then the matrix crack causes the fracture of the overall composite. To pursuit
both the flexibility and high-strength of CFRP, it is necessary to discuss what length
of the fiber is appropriate to take full advantage of the superior strength properties
of the fiber. Thus we should understand how the dominant damage mode shifts
from the fiber breakage in continuous CFRP to the fiber-avoiding matrix crack in
discontinuous CFRP.

Various models have been proposed for the strength of discontinuous fiber-
reinforced composite [2—4]. These models were simple extensions of the model
used for continuous fiber-reinforced composites, taking into account initial random
discontinuities inherent in discontinuous fiber-reinforced composites. The model
given by Fukuda and Chou [3] paid special attention to the stress-concentration
effect on the breakage of the neighboring fiber due to the discontinuities. The
model given by Ibnabdeljalil and Phoenix [4] dealt with the statistical aspects of
the strength of discontinuous fiber-reinforced composites, analyzing the fiber dam-
age evolution along the fiber with initial discontinuities within a global load sharing
(GLS) framework. Both models inherently assume that unless the fiber is fully cov-
ered by the stress-degraded region (ineffective length) around fiber breaks or fiber
ends, the fiber breakage can occur and it causes the stress degradation of the com-
posite. Thus the models yield the strength of the composites with considerably short
fibers even when the fiber length is close to the ineffective length. However, these
conventional approaches may not be correct. In realistic situations, the dominant
damage process in composites shifts from the fiber damage evolution to the ma-
trix crack propagation (Fig. 1) when the fiber length is reduced as described above.
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Figure 1. Damage process in discontinuous fiber-reinforced composites.
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Therefore, the damage progress of the matrix crack from fiber ends has to be ad-
dressed with a detailed analysis, to understand the underlying damage mechanism
of the strength degradation of discontinuous CFRP. The previous models are not
sufficient for such a discussion.

This paper thoroughly discusses the damage transition mechanism between
the fiber-breaking mode and the fiber-avoiding crack mode, which influences the
strength of CFRP when the fiber length is reduced. The knowledge of the critical
fiber length for the transition is essential to pursuit both the flexibility and high-
strength of CFRP. The GLS models used for the strength of continuous CFRP have
been extended to discuss the strength of discontinuous CFRP as described above,
and these extended models are summarized in Section 2 as a comparison. However,
these models cannot discuss the damage transition to the fiber-avoiding crack mode
when the fiber length is reduced. Instead, Section 3 presents a numerical model
for the fracture of unidirectional discontinuous CFRP, with consideration of matrix
crack and fiber breakage. The model addresses the matrix crack with continuum
damage mechanics model and the fiber breakage with the Weibull model for fiber
strengths. Finally, Section 4 presents the simulated results and discusses the damage
transition mechanisms between the fiber-avoiding and fiber-breaking modes.

2. Conventional Approach for Composite Strength
2.1. GLS Model

First of all, we discuss the strength of unidirectional discontinuous fiber-reinforced
composites, based on GLS assumption [5, 6]. The GLS model focuses on one frag-
mented fiber (i.e., discontinuous fibers), aligned in the fiber axial direction, and
neglect the interaction in the fiber cross-sectional direction between fibers. It pre-
dicts the composite’s strength by simulating the fiber damage evolution in such a
fiber. In simulating the fiber damage evolution for CFRP, we can utilize the Monte
Carlo simulation with the elastic—plastic hardening shear-lag model given by Okabe
and Takeda [7], because the fiber stress distribution in CFRP is mostly controlled
by the matrix shear due to its superior interfacial properties [8, 9].

First, we will briefly explain the elastic—plastic shear-lag model. The axial length
of the model was set to 100 mm, and the axial length was divided into 10000
segments. The fiber ends in the discontinuous fiber-reinforced composites were rep-
resented by setting some random segments to the initially broken segments. Thus
the averaged length of the discontinuous fibers was related to the density of the
initially broken segments introduced in the model. The transverse length of matrix

shear region in the model was set to D = (1/27/ V3 Vi — 2)ry, as noted in Ref. [10].
(Here, ¢ is the fiber radius, and Vt is the fiber volume fraction.) The plastic consti-
tutive behavior of the matrix used linear-isotropic hardening function as

& = oy + FnéP, (1)
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where o is the effective stress, &P is the equivalent plastic strain, oy is the matrix
yield stress, and Fy, is the matrix plastic modulus. With this model, we can calculate
the fiber axial stress distribution of the unidirectionally aligned fiber at arbitrary
applied strains with the elastic—plastic hardening shear-lag model.

Then this stress analysis was incorporated into Monte Carlo simulation technique
to address the fiber damage evolution [11]. We first assigned the fiber strengths to
initially unbroken segments based on Weibull model. In the Weibull model, the
cumulative failure probability of a fiber segment of length A is given as

A o \*
Pf(a)=1—exp{<—L—O><o—o> }, (2

where p’ is Weibull modulus, and oy is the characteristic strength of the fiber with
length Lg. The actual strength o; for the jth fiber point was then chosen by se-
lecting a random number R; within (0, 1) and solving R; = P¢(o}, 09). We judged
the broken segments whose stress reaches the assigned strength with increasing ap-
plied strain. Thus we conducted the Monte Carlo simulation for the fiber damage
evolution in unidirectional discontinuous fiber-reinforced composites.

The composite stress was determined by multiplying the fiber volume fraction
and the fiber axial stress averaged for all segments. Thus the stress—strain relation
of the composite could be obtained. The simulation terminated when the composite
stress dropped to 90% of the maximum attained stress. The composite strength was
then obtained as that maximum stress.

Throughout the paper, the simulations used the material properties for carbon
fiber and epoxy matrix, listed in our previous literature [8]. The fiber volume frac-
tion V¢ was set to 40%. The fiber strength parameters were reported in our previous
literature [7]. The Weibull scale parameter was og = 4530 MPa, gage length was
Lo = 50 mm, Weibull shape parameter was p’ = 15.

2.2. Results and Discussion

Figure 2 presents the stress—strain relations and the density of fiber breaks as a
function of the applied strain. The composite stress drops due to the accumulated
fiber breaks. As the discontinuous fibers are short, the initial composite stiffness
reduces because the stress-degraded region around fiber ends becomes large over
the axial composite length. In contrast, the applied strain where fiber breaks begin
to accumulate does not change so much when the fiber length is varied. This is
because the breaking strain is solely controlled by the local fiber strength, when
the fiber breakage occurs within the region where the fiber stress fully recovers
to the far-field applied stress. That region may become small by the existence of
fiber ends, but not small enough to influence the fiber breaking behavior. Therefore,
according to the GLS predictions, the composite strength with a short fiber length
reduces mostly due to the degradation of the stress-carrying capacity of the fiber
accompanied with the increase of fiber ends.
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Figure 2. Fiber damage evolution and stress—strain curves predicted with GLS model.
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Figure 3. Comparison of the composite strength versus fiber length.
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Figure 3 summarizes the composite strength obtained with the GLS model when
the averaged fiber length is varied. The theoretical prediction based on Duva’s GLS
model [6] considering the fragmented length distribution of the fiber is also indi-
cated in the figure. (This theoretical result was calculated through the incorporation
of the fiber end effect into Duva’s model by assuming an initial break density. Ad-
ditionally, we substituted the result of the elastic—plastic hardening shear-lag model
into the stress recovery length required in the calculation.) The tendency of the
composite strength varying with fiber length is almost the same for both models.
However, the result for the shorter fiber length is different. Duva’s model permits
fiber damage evolution regardless of the fiber length. In contrast, the Monte Carlo
simulation reveals that the fiber breakage causing the critical degradation of the
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composite stress does not occur in the case of the fiber length smaller than a certain
critical length (219 pm). Thus we cannot define the composite strength in this range
of fiber length. This situation is caused when the axial length of the fiber is fully
covered by the stress-degraded region around fiber breaks or fiber ends. This criti-
cal fiber length characterizes the lower-limit length where the fiber breakage is the
dominant damage in the final fracture of the composite. Below this limit, the final
failure of the composite is not caused by the fiber breakage. It may be controlled by
the matrix cracking process.

However, these theoretical models cannot address the stress-concentration effect
of the matrix crack from fiber ends on neighboring fibers, nor the final failure caused
by the fiber-avoidance crack. We will discuss these effects in the following sections.

3. Periodic-Cell Simulation for the Progressive Damage in Discontinuous
CFRP

We next conducted periodic-cell simulations focusing on the extension of the matrix
crack from fiber ends in discontinuous CFRP. As noted in the Introduction, the
fundamental question to be discussed is how the fiber-avoiding and fiber-breaking
damage modes occur. As pointed out by Xu et al. [12], when the fibers are strongly
bonded to the surrounding material and the fiber is sufficiently strong, the crack is
trapped by the fibers. Therefore, the damage mechanism after the matrix crack is
trapped by the fibers (Fig. 1) is the most important to discuss. In the CFRP with
short fibers, the matrix crack easily avoids the fibers and then advances. Thus the
strength improvement by the fibers is limited. If the matrix crack cannot avoid the
fibers, it cannot grow until the fiber breakage occurs ahead of it. This mechanism
leads to the high strength of continuous CFRP. For this discussion, we simulated
the interacting damage progress of fiber breakage and matrix crack within two-
dimensional finite-element framework as below.

3.1. Periodic-Cell Model

Here we will briefly explain the periodic-cell model used in those simulations. The
periodic-cell model assumes that the overall composite is composed of many unit-
cell models aligned periodically. We employed the unit-cell models as illustrated in
Fig. 4. We assumed a two-dimensional plane-strain condition. The unit-cell models
contained randomly-arranged discontinuous fibers. The lengths of all fibers con-
tained in the model are uniform. The number of fibers is determined so that the
resulting volume fraction of fibers is accurate. The fiber volume fraction V¢ was
set to 40%. In this model, the fiber spacing locally reduces or increases due to the
random arrangement of the fibers, and thus the matrix-rich region tends to become
large in some regions.

The fibers consisted of nine-node quadrilateral elements and the matrix consisted
of six-node triangle elements. It should be noted that the fiber width in the two-
dimensional plane-strain model should be chosen as half the actual fiber diameter,
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Figure 4. Unit-cell model for the periodic-cell simulation.

in order to reproduce the fiber axial stress distribution accurately [13]. The fiber
was modeled as an orthotropic-elastic material while the matrix was assumed to be
an isotropic elastic—plastic material. The plastic constitutive behavior of the matrix
was based on J, flow theory and used linear-isotropic hardening function (1).

We analyzed the models with fiber length /f = 0.02 mm, 0.05 mm, 0.1 mm,
0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.8 mm, 1.0 mm, 2.0 mm. (The finite-element
mesh shown in Fig. 4 is the part of the model with fiber length /f = 0.4 mm.) The
model length L in y-direction is adjusted to some extent for various fiber lengths.
(Corresponding to each fiber length, we set L = 0.525 mm, 0.525 mm, 1.05 mm,
1.05 mm 1.47 mm, 1.47 mm, 2.1 mm, 2.1 mm, 2.1 mm, 2.1 mm.) All opposite
sides of the unit cell were subject to periodic boundary conditions. As shown in
Fig. 4, a fiber can be located on the periodic boundary in the unit-cell model. To
enforce the periodicity condition, the nodes on one side of the unit-cell model were
connected to those on the other side, so that both sides could deform equally. For
this purpose, the same node number was assigned to each pair of corresponding
nodes on opposite sides of the model.

3.2. Periodic-Cell Simulation

We next describe the simulation procedure to deal with the progressive damage
(matrix crack and fiber breakage) in discontinuous CFRP.
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3.2.1. Fiber Breakage

Our simulation considered the fiber breakage based on Weibull statistics. In the
models, potential fiber break points were set in the direction perpendicular to the
fiber axis with regular intervals. We set a large number of those paths for all fiber
lengths, and the interval was sufficiently small (50 pum—100 um) even in the case of
the longest fibers. Fiber break was assumed to follow a maximum stress criterion
with a Weibull statistical distribution of breaking strengths, described by (2), and
we assigned the fiber strength at each potential break point. During the simulation,
the fiber axial stress at the potential break points was monitored. When the fiber
axial stress reached the critical stress given by the Weibull model, a fiber break
was introduced by unloading the internal nodal force normal to the corresponding
fiber-breaking surface.

3.2.2. Matrix Crack

We employed a one-parameter damage mechanics model to deal with the initiation
and propagation of the matrix crack. As pointed out by, e.g., Fiedler et al. [14],
the epoxy resin fails through the extension of existing defects due to normal stress
followed by shear hackle failure. The damage mechanics model is useful to in-
clude these microscopic situations involved in the damage extension. For example,
Kobayashi et al. [15] utilized the damage mechanics model to simulate the neck-
ing and failure process of ductile polymer at high applied strains. Here microscopic
crazing evolution and annihilation could be reasonably incorporated into damage
extension simulation of ductile polypropylene through the evolutionary equation of
the damage variable. Therefore we extended this approach to epoxy fracture.

We begin with defining strain-equivalent configuration [16]. The variables in
the nominal state (macroscopically homogenized state, or the state used in finite-
element calculation) (stress o, strain ¢, stiffness E) can be expressed in relation
to those in the true state (actual, microscopically damaged state) (o*, &*, Ep) as
follows. (Here we write down one-dimensional description for simplicity.)

e =g, E=(1—-D)Ey—o*= 3)

1-D’
where D denotes the damage variable causing the stiffness degradation. As D in-
creases, the stiffness reduces till finally £ = 0 when D = 1. For the elastic—plastic
matrix, the multi-dimensional incremental stress—strain relations can be derived as
below.

AD
1-D

Ao =(1—D)C?P: Ae — o, 4
where C®P is the elastic—plastic constitutive tensor. Here the damage variable is
defined as scalar quantity.

The microscopic failure characteristics can be incorporated into the evolutionary
equation of damage variable. Here we define the following evolutionary equation



M. Nishikawa et al. / Advanced Composite Materials 18 (2009) 77-93 85

of damage variable.

AD = (1—D)C{Aeh) + (Bo+ B D)As* (0< D<), (5)
2
where C A, = AA{D(E) }
Oy

The first term represents the extension of existing voids or defects due to plastic
volumetric expansion strain &b, (referring to Gurson’s famous equation [17]), while
the second term represents the damage extension due to shear failure. P denotes
the plastic equivalent strain and oy, denotes the mean stress. The meaning of the
bracket () in (5) is (X) =X (X > 0), 0 (X < 0). As D increases, the contribution
of the first term reduces, which means that the void growth is suppressed by neigh-
boring voids, and then the shear failure dominates. This reflects the microscopic
situations in epoxy fracture. The similar treatment for the first term can be found
in the literature by Kobayashi et al. (Here we simplified the definition of the volu-
metric expansion strain increment by parabolic fitting, referring to their preliminary
FEM results.) The phenomelogical parameters in (5) are A, By and B;. We further
simplified By = 0 in this study. Here it is noted that the damage variable does not
increase without setting the initial value of D (physically initial defects) in the case
of By = 0. Therefore, we set the initial value of D denoted by Djy; to a small value.

Matrix crack was judged at the integration point of each finite-element. When D
approached 1, the contribution to the stiffness matrix became near zero and some-
times numerical instability occurred. Therefore, we eliminated the corresponding
element when the averaged D in the element reached D, (near 1). The successive
elimination process yielded free nodes. We searched for such nodes and excluded
them from the equilibrium equations of the finite-element analysis. By this proce-
dure, we simulated the initiation and propagation of matrix crack.

In Ref. [13], we applied this model to simulate the microscopic damage in
single-fiber composite (SFC) tests using carbon-fiber and epoxy-matrix system. We
demonstrated that the matrix crack model could reasonably reproduce the character-
istic transverse matrix crack from a fiber break in the tests. Then the phenomelogical
parameters A, By and Bj in (5) were reasonably calibrated through the comparison
with SFC test results. Then we used the calibrated parameters A = 0.5, By =0,
Bi = 0.5 and Dj,; = 0.01 as the initial value of D. In addition, we used the same
matrix crack model for interpreting the microscopic experimental phenomena in
Ref. [18].

3.2.3. Finite-Element Formulation
Finally, we present the finite-element formulation of the present simulation. The
virtual work for the analytical region with fiber region V; and matrix region Vy, is

as follows:
/a:BedV—i—/ a:8€dV:/f~8udS. (6)
Vi m St

Here, o is the stress tensor, ¢ is the strain tensor, u is the displacement vector, f is the
external force vector on the prescribed boundary S; and § is the virtual component.
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We consider a quasistatic rate formulation by expanding the virtual work equation
at time ' =t + At around the (assumed known) state prevailing at time ¢ to linear
order in Af as

At(/ ’(r:(SedV—l—/ ’d:&-:dV)
Vi m
=/t/f-5udS—</ fazasdv+/ fazasdv), (7
S[ Vf m

where ‘denotes the time derivative.
In (7), the constitution law of solid elements is given by

6=Cf:¢ for fiber,

: 8)

6=(1—-D)CY:é—

o for matrix,

1-D
where C is the fourth-order tensor of the constitution law, subscripts f and m de-
note fiber and matrix, respectively, and superscripts e and ep denote elastic and
elastic—plastic materials, respectively. The effect of matrix cracking and plasticity
is implemented through this constitutive law of matrix. Then, equation (7) is trans-
formed into the following equation:

(c‘;:Ae):aedv+/ (1= D)CY : Ae) :8edV
Ve m

t t AD t
= f-dudS — o:6edV + — (o :6e)dV. 9
S, VitV Vm | — D

Now this formulation was coupled with a periodic-cell simulation technique
(e.g., [19]) to conduct simulations using the periodic-cell model. Following the
routine operation employed in the homogenization technique (e.g., [20]), let us first
separate the displacement u and strain increment Ae into global components, which
are independent of the coordinates in the unit cell model, and local components as
follows.

u=ug+u, and Ae=Aeg+ Aer, (10)

where subscripts G and L denote the global and local components, respectively.
By these decompositions into global and local components, the basic incremental
equation for virtual work (equation (9)) is transformed into the following equation
for the unit-cell model with periodic boundaries.

(Cf: Aep):8edV +/ (1 - D)Cw : AeL) : 8edV
Vi Vin

t AD 1
=— o:6edV + (o :6e)dV
Vi+Vm le_D

— (ngAeG):(SedV—/ (1 —D)CY : Aeg) :8edV,  (11)
Ve m
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where the traction boundary S; as in (9) does not exist in the present periodic-
cell simulation. The global strain increment Aeg should be controlled to achieve
loading conditions in the periodic cell.

Finally, the discretized form of (11) is the matrix equation as follows:

(Ki+ 'K AUL = —(Qt + Q) + "Quam — (AQt,6 + AQm),  (12)
where:

K=Y / B¢ DEBEdV,

e er
Kin = Z/ (1— D)B DBV,

o v
Qf:Z/ B GdV,

e er
Qm:Z/ B 64V, (13)
Qdam_zfe—l_ B6 av,
AQig=)_ / B¢ DiAeGdV,

e er

AQuc=Y / (1— D)B¢ DX AegdV,
e m

where U is the nodal displacement vector, K¢ and K, are the tangential stiffness
matrices of fiber and matrix elements, Qr and Qy, are the nodal forces correspond-
ing to the element stresses. B is the strain—displacement matrix, D is the constitutive
matrix, and F is the externally applied nodal forces. The effect of constitution law
for the matrix (equation (8)) is included in the expression in the matrix stiffness Ky,
and the added nodal force Qgam. AQf g and AQp g are the contributions by the
predetermined global strain increment Aeg. Equation (12) is the basic equation for
the present periodic-cell simulation.

The periodic-cell simulations could be conducted by controlling the global strain
increment Aeg. In an incremental step in the simulation, we first calculated the
displacement increment AUy, by solving equation (12) under periodic boundary
conditions. The total strain increment Ae was calculated by adding the predeter-
mined Aeg to Aer. Then the stress o in the unit cell could be obtained with
equation (8).

4. Simulated Results and Discussion

We present the results of the periodic-cell simulation for the progressive dam-
age in discontinuous CFRP under a tensile load. The simulations were conducted
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Figure 5. Comparison of the simulated damage when the fiber length /f is varied. This figure is pub-
lished in color on http://www.ingentaconnect.com/content/vsp/acm

by controlling strain increment proportionally (Aeg = (Aéxy, Agyy, Aéxy)G =
«(—0.3,1.0,0.0)), considering the Poisson’s effect approximately. The compos-
ite stress is defined as the average of the normal stress oy, in y-direction all over
the unit cell. The simulations used the same material properties and fiber strength
parameters (equation (2)) as those used in Section 2. Other parameters for matrix
crack (equation (5)) were described in Section 3.2. The simulations were conducted
with Intel(R) Visual Fortran Compiler 9.0 on a Windows XP computer. We used
PARDISO Direct Sparse Solver provided in Intel(R) Math Kernel Library 8.0 as a
solver.

Figure 5 presents the simulated results. The stress in the figure is the normal
stress in y-direction. (It should be noted that the deformation plot was generated by
considering the local displacement uy, only. For this reason, the damage in the figure
appears to have a large opening displacement.) The tensile stress—strain relations
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Figure 5. (Continued.)

of the composites obtained with those simulations are presented in Fig. 6. Below
we discuss the relation between this microscopic damage process and macroscopic
stress—strain response, referring to these figures.

First, when the fiber length is very small (/f = 0.05 mm), the matrix crack accu-
mulates at multiple fiber ends, and it propagates as it avoids the neighboring fiber
(Fig. 5(a)). These matrix cracks tend to accumulate and propagate more readily in
the matrix-rich region. In this range of short fiber lengths, the composite stress is
reduced instantaneously after the initiation of multiple fiber end damage, as shown
in Fig. 6. Thus the peak stress of the composite is controlled by that initiation.

When the fiber length increases, as found in Fig. 5(b) (/f = 0.3 mm), the cluster
of the accumulated fiber end damage stops extending as it is trapped by the fiber in
the advancing direction (i.e., x-direction). In this case, as seen in Fig. 6, even after
the composite stress drops due to the formation of the cluster of matrix crack, it
resumes increasing since the stress is carried by the fibers that trap that cluster. At
a high applied strain, the matrix crack avoids those trapping fibers and coalesces by
causing the shear fracture of the matrix between fibers, as seen in Fig. 5(b). Then the
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Figure 6. Simulated stress—strain curves when the fiber length /s is varied.

stress carried by fibers is significantly reduced, which causes, as a consequence, the
critical stress degradation of the composite. Therefore, the fracture of the composite
with this fiber length range is still characterized by the fiber-avoiding mode of the
matrix crack.

As the fiber length further increases, the cluster of matrix crack cannot propagate
in a fiber-avoiding mode, as found in Fig. 5(c) (/f = 0.8 mm). Instead, the cluster
of matrix crack finally grows with the breakage of the trapping fibers. This fiber
breakage leads to the reduction of the composite stress (Fig. 6). In the cases of even
longer fibers, the composite fracture is characterized by the fiber-breaking mode.
For long fibers (Fig. 5(d) (It = 2.0 mm)), the cluster further grows with successive
fiber breakages according to the state of local fiber-strength variability and stress
concentration, which is similar to the damage mode in continuous fiber-reinforced
composites. Then the composite stress reduces drastically just after the maximum
stress.

Finally, Fig. 3 plotted the composite strength, defined as the maximum stress in
stress—strain curves, as a function of the fiber length /r. In the figure, the hollow
symbol indicates the cases where the peak stress is controlled by the fiber-avoiding
mode, while the filled symbol indicates the cases of the fiber-breaking mode. The
propagation mode is selectively determined by the fiber length, and the critical
length for the transition between fiber-breaking and fiber-avoiding modes lies be-
tween 0.4 mm and 0.5 mm. When the reinforcing fiber becomes shorter than this
critical length, the composite strength terribly reduces, as the matrix crack is likely
to propagate in a fiber-avoiding mode. A high strength level of the composite can
be maintained in the cases of fiber-breaking modes for the long fiber length.
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The results with the GLS model described in Section 2 were also plotted in Fig. 3.
It is found that the critical fiber length predicted with periodic-cell simulations is
larger than the GLS prediction (219 um). This implies that the GLS prediction can-
not be correct. For example, for /f = 0.3 mm (Fig. 5(b)), the cluster of matrix crack
does not yield a sufficient stress concentration on nearby fibers, and then the fiber-
avoiding coalescence is selectively caused. Then the critical fiber length is very
sensitive to local factors; the stress-concentration effect of the cluster on nearby
fibers to influence the fiber breakage, and the distance between fiber ends to influ-
ence the fiber-avoiding propagation. This situation is completely different from that
assumed in the GLS model. Therefore, the critical length predicted with the GLS
model is not appropriate to judge whether we can take full advantage of the superior
strength properties of the fiber, because the strength is significantly reduced for the
composite with that length.

In summary, the composite strength for the fiber length near the transition-
length is influenced by quite complicated factors; the stress-concentration effect
of the fiber end damage cluster, and the selective cluster growth in a fiber-avoiding
or fiber-breaking mode according to the stress field. The mechanism assumed in
Ref. [2, 3] for the strength of discontinuous fiber-reinforced composites was rather
analogous to that discussed above in that the stress-concentration effect of the fiber
end damage cluster was included. However, their model only predicted the suscep-
tibility to fiber breakage due to the stress concentration of the cluster, and it could
not address the statistics of fiber breakage nor the cluster growth itself. Only within
the range of very long fiber lengths, the matrix crack cannot propagate at all, and
then the composite strength can be discussed by simulating the fiber damage evolu-
tion including the stress-concentration effect of fiber end damage. This situation is
quite similar to that assumed generally in local load-sharing (LLS) models, and for
example, the simulation for the fiber damage evolution in our literatures [10, 21] is
useful to discuss the strength of discontinuous fiber-reinforced composites within
this range of fiber length.

Moreover, we can conclude that the cluster of fiber ends and/or locally large
matrix-rich region have significant effects on the composite strength, when we use
the fiber length near the critical fiber length. If an improved material design makes
it possible to adjust the fiber alignment so that the clusters of fiber ends and matrix-
rich regions are reduced, then we can shift the transition length to shorter fiber
length to explore the maximized flexibility of CFRP without degradation of the
strength.

5. Conclusions

This paper investigated the damage transition mechanism between the fiber-
breaking mode and the fiber-avoiding crack mode when the fiber length is reduced,
which influences the strength of CFRP. The critical fiber length for the transition
is a key parameter for the manufacturing of flexible and high-strength CFRP com-
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posites with thermoset resin. For this discussion, we presented a numerical model
to address the matrix crack with continuum damage mechanics model and the fiber
breakage with the Weibull model for fiber strengths. With this numerical model, the
damage transition behavior was discussed.

For the unidirectional discontinuous CFRP, the damage mode causing the final
fracture is divided into two patterns; the fiber-breaking and fiber-avoiding modes
when the matrix crack from fiber ends propagates. The transition between fiber-
breaking and fiber-avoiding modes occurs when the length of discontinuous fibers is
varied. The composite strength significantly reduces around the critical fiber length
for the damage-mode transition as the fiber length is reduced. A high strength level
of the composite can be maintained only in the cases of fiber-breaking modes for the
long fiber length. Therefore, we should identify the critical length for the transition
appropriately to discuss the strength degradation of discontinuous CFRP when the
fiber length is reduced.

The critical fiber length for the transition was also obtained with periodic-cell
simulations. The length was longer than the critical length predicted with GLS
model. This is because the critical fiber length is very sensitive to local factors;
the stress-concentration effect of the cluster on nearby fibers to influence the fiber
breakage, and the distance between fiber ends to influence the fiber-avoiding prop-
agation, which are not considered in GLS models. Basically, the mechanisms as-
sumed by the previous models were only one aspect of the composite fracture. In
contrast, we have got a clear picture of the composite fracture, using the simula-
tions dealing with both fiber breakage and matrix crack. The composite fracture is
closely related to several mechanisms involving the cluster formation, stress con-
centration of the cluster, the selection of fiber-breaking or fiber-avoiding mode, the
cluster growth and fracture. This is the most important conclusion of our paper.
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