• Title/Summary/Keyword: reduced glutathione

Search Result 721, Processing Time 0.031 seconds

Effects of Copper and Selenium Supplementation on Performance and Lipid Metabolism in Confined Brangus Bulls

  • Netto, Arlindo Saran;Zanetti, Marcus Antonio;Claro, Gustavo Ribeiro Del;de Melo, Mariza Pires;Vilela, Flavio Garcia;Correa, Lisia Bertonha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.488-494
    • /
    • 2014
  • Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on performance, feed efficiency, composition of fatty acids in Longissimus dorsi (LD) muscle, and cholesterol concentration in serum and in LD muscle and enzymes activities, reduced glutathione (GSH) and oxidized glutathione (GSSG). The treatments were: i) Control, without copper (Cu) and selenium (Se) supplementation; ii) Se, 2 mg Se/kg of dry matter such as sodium selenite; iii) Cu, 40 mg Cu/kg of dry matter such as copper sulfate; iv) Se/Cu, 2 mg Se/kg of dry matter such as sodium selenite and 40 mg Cu/kg of dry matter such as copper sulfate. LD muscle fatty acid composition was not influenced by the treatments (p>0.05). The serum concentration of cholesterol was not influenced by the treatments (p>0.05), however, the concentration of cholesterol in LD was lower in cattle supplemented with copper and selenium (p<0.05). Oxidized glutathione and reduced glutathione increased (p<0.05) with Cu, Se and Se/Cu supplementation. The supplementation of copper (40 mg/kg DM) and selenium (2 mg/kg DM) altered the metabolism of lipids in confined Brangus cattle, through a decrease in cholesterol deposition in the LD, possibly by changing the ratio between reduced glutathione/oxidized glutathione. Copper and selenium supplementation improved animal performance and feed efficiency (p<0.05) when compared to the control group, providing advantages in the production system, while also benefiting consumers by reducing cholesterol concentration in the meat.

Effects of grape pomace on the antioxidant defense system in diet-induced hypercholesterolemic rabbits

  • Choi, Chang-Sook;Chung, Hae-Kyung;Choi, Mi-Kyung;Kang, Myung-Hwa
    • Nutrition Research and Practice
    • /
    • v.4 no.2
    • /
    • pp.114-120
    • /
    • 2010
  • The effects of grape seeds extract and grape peels extract prepared from grape pomace on the activity of antioxidant enzymes, degree of lipid peroxidation in serum and liver tissue were investigated in rabbits fed on high cholesterol diet. New Zealand white rabbits were divided as follows ; 1) NOR (normal group); 2) CHOL (cholesterol group); 3) GSH (cholesterol + grape seed extract group); 4) GPE (cholesterol + grape peel extract); 5) GSP (cholesterol + grape seed powder); 6) GPP (cholesterol + grape peel powder); 7) GE (cholesterol + grape seed and peel extract); 8) GP (cholesterol + grape seed and peel powder). Eight groups of rabbits were studied for 8 weeks. At the end of the experimental period, rabbits were sacrificed and the liver tissue were removed. Then, GSH, GPx, GST, CAT and MDA in the liver were measured. In liver tissues, total glutathione contents (GSH), glutathione peroxidase (GPx) and catalase (CAT) activity, which was significantly higher by grape seed extract supplementation. The level of malondialdehyde (MDA) was lower in the serum of rabbits fed grape seed extract or grape peel powder plus cholesterol than in the serum of rabbits fed cholesterol alone. It is therefore likely that grape seed extract prepared from grape pomace functioned as antioxidants in vivo, negating the effects of the oxidative stress induced by 1% cholesterol diet. The grape seed extract was found effective in converting the oxidized glutathione into reduced glutathione, and in removing $H_2O_2$ that is created by oxidative stress. The grape peel powder was found to have small influence on reduced glutathione content, CAT and GPX activity, but it increased GST activity in liver tissues, resulting in promoting the combination of lipid peroxide and glutathione (GSH), and further, lowering the formation of lipid peroxide in the serum. Therefore, grape pomace (grape seed extract and grape peel powder) supplementation is considered to activate the antioxidant enzyme system and prevent damage with hypercholesterolemia.

Effect of Dietary Selenium of Metallothionein Synthesis and Antioxidative Detoxificantion Mechanism in Cadmium Administered Rats (Cadmium 투여 흰쥐에 있어서 Metallothionein 합성과 항산화적 해독기구에 미치는 식이 Selenium의 영향)

  • 이순재
    • Journal of Nutrition and Health
    • /
    • v.26 no.3
    • /
    • pp.286-298
    • /
    • 1993
  • In order to investigate the effect of selenium (Se) on the liver damage, metallothionein synthesis and hepatic antioxidative detoxification system in cadmium(Cd) administered rats. Sprague-Dawley male rats(60\\5g) were divided into two diet groups, depending on with (CdS groups) or without (Cd groups) 0.5ppm Se supplementation and fed experimental diets ad libidum for 4 weeks. And then each group was again subdivided into five groups, depending on injection number of Cd, i.e., 0, 1, 2, 3, and 4 times of 2.5mg Cd/kg of body wt once a day. Hemoglobin concentration, hematocrit values, superoxide dismutase, glutathione peroxidase and glutathione S-transferase activite were decreased progressively with increasing number of Cd injection, but increased by the supplementation of Se. The reduced form of glutathione (GSH) contents in blood and liver and vitamin E content were decreased and oxidized form (GSSG) increased in Cd groups, but these of Se supplemented groups were not very different from controls. Cd reduced liver vitamin E content which was not restored by Se supplementation. Liver lipid peroxide values were elevated with increasing doses of Cd, but Se supplementation reduced these elevated levels. Accumulation of metallothionein in liver and kidney was increased with increasing number of Cd injection, but Se did not affect on them. Histological examination revealed that lysosomes were significantly increased and mitochondria and Golgi apparatus were enlarged by Cd, however, these changes were reduced by Se. It was concluded that Se administration promoted antioxidative detoxification and alleviated peroxidative damage in rat liver by Cd.

  • PDF

Protective Effect of Administrated Glutathione-enriched Saccharomyces cerevisiae FF-8 Against Carbon Tetrachloride ($CCl_4$)-induced Hepatotoxicity and Oxidative Stress in Rats

  • Shon, Mi-Yae;Cha, Jae-Young;Lee, Chi-Hyeoung;Park, Sang-Hyun;Cho, Young-Su
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.967-974
    • /
    • 2007
  • The present work is aimed to evaluate the protective effect of glutathione-enriched Saccharomyces cerevisiae FF-8 strain on carbon tetrachloride ($CCl_4$)-induced hepatotoxicity and oxidative stress in rats. The activities of liver markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase), lipid peroxidative index (thiobarbituric acid-reactive substances), and the antioxidant status (reduced glutathione) were used to monitor those protective roles of FF-8 strain. The liver marker enzymes in plasma and the lipid peroxidation in the liver were increased when $CCl_4$ was treated but these were significantly decreased by FF-8 strain treatment. The hepatic concentration of glutathione in the current glutathione-enriched FF-8 strain fed animal was approximately twice as high as the normal, but this was slightly increased in response to $CCl_4$ plus glutathione-enriched FF-8 strain. The increased liver triglyceride concentration due to the $CCl_4$ treatment was significantly decreased by FF-8 strain and the reduced level reached to that of normal group. Administration of FF-8 strain in normal rat did not show any signs of harmful effects. Therefore, the current findings suggest that FF-8 strain could be an effective antioxidant with no or negligible side-effects and it might be useful for the purpose of protection treatment of hepatotoxicity and oxidative stress in $CCl_4$-treatment in rat.

Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes

  • Hewage, Susara Ruwan Kumara Madduma;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Moon, Yu Jin;Shin, Dae O;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.427-433
    • /
    • 2017
  • Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

Prevention of Alloxan-induced Diabetes by Se-Methylselenocysteine Pretreatment in Rats: The Effect on Antioxidant System in Pancreas

  • Nam, Tack-Il;Park, Jung-Jin;Choi, Eun-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • In this study, we assessed the effects of Se-methylselenocysteine (MSC) pretreatment on the antioxidant system in the pancreas and the development of alloxan-induced diabetes in rats. The rats were treated with MSC at a dose of 0.75 mg/rat/day for 2 weeks. The MSC-treated rats evidenced significantly increased glutathione content, GSH/GSSG ratio, and glutathione peroxidase (GPx) and glutathione reductase (GRd) activities in the pancreas. Diabetes was induced via alloxan injection. The alloxan-diabetic rats evidenced significantly reduced glutathione content and glucose 6-phosphate dehydrogenase (G6PD) activity and increased catalase activity in the pancreas, when measured 3 days after the alloxan injection. 2-week MSC pretreatment was shown to prevent the alloxan-induced hyperglycemia as well as changes in glutathione content, G6PD activity, and catalase activity. The results of this study indicate that the prevention of alloxan-diabetes by MSC pretreatment is associated with its effects on antioxidants in the pancreas, namely, the increase in cellular content and the reduction of glutathione by the facilitation of glutathione recycling induced via increased GPx, GRd, and G6PD activities.

Induction of NAD(P)H:quinone reductase and glutathione S-transferase by Xanthii Fructus and Prunellae Spica Extracts (창이자 및 꿀풀하고초에 의한 NAD(P)H:quinone reductase와 glutathione S-transferase의 유도)

  • Shon, Yun-Hee;Lee, Ki-Taek;Park, Sin-Hwa;Cho, Kyoung-Hee;Lim, Jong-Kook;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.4 s.127
    • /
    • pp.269-273
    • /
    • 2001
  • Ethanol extracts from Xanthii Fructus (XFE) and Prunellae Spica (PSE) were investigated for the effects on the induction of cancer chemoprevention-associated enzymes. The following effects were measured: (a) induction of quinone reductase (QR) (b) induction of glutathione S-transferase (GST) (c) reduced glutathione (GSH) level. XFE and PSE were potent inducers of quinone reductase activity in Hepa1c1c7 murine hepatoma cells. Glutathione levels were increased with XFE and PSE. In addition, glutathione S-transferase activity was increased with XFE. However, GST activity was not increased with PSE. These results suggest that XFE and PSE have chemopreventive potentials by inducing quinone reductase and increasing GSH levels.

  • PDF

Effects of Antioxidants on the Photosynsthesis and Carbohydrates/Saponin Contents in Panax ginseng Leaves (인삼잎의 광합성과 탄수화물.사포닌 함량에 미치는 항산화제의 효과)

  • 양덕조;김용해
    • Journal of Ginseng Research
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 1994
  • We studied the folilar wiping effects of antioxidants (ascorbate, glutathione and sodium azide), which effectively inhibited the chlorophyll bleaching or completely recorved the early stage of photosynthesis of Panax ginseng C.A. Meyer, on photosynthesis, stomatal resistance, free sugar, starch, and total saponin contents of ginseng under the excess light intensity (45 kLux) during 6 days. Ascorbate and glutathione, endogenous antioxidant, recovered photosynehtsis and stomatal resistance, and reduced the photoinhibition by the excess light intensity (45 kLux) on free sugar, starch and total saponin contents. But sodium azide, exogenous $^{1}O_2$ quencher, showed negative effect. Therefore, we assumed that carbohydrates and saponin metabolisms of ginseng by antioxidants (ascorbate, glutathione) were normal. For the reduction of inhibition by excess light in ginseng a program for the higher activation of antioxidants and antioxidative enzymes in ginseng leaf will be desirable. Key words Antioxidants, ascorbate, glutathione, Photoinhibition, ginseng.

  • PDF

Studies on Reaction of Formaldehyde with Naturally Occurring Thiol Compounds and Ascorbic Acid

  • Lajos-Trezl;Cho, Young-Bong;Maria, Peter-Di;Kim, Sang-Duk;Prabhakar-D.Lotlikar;Paik, Woon-Ki
    • Archives of Pharmacal Research
    • /
    • v.11 no.2
    • /
    • pp.114-121
    • /
    • 1988
  • To gain insight into possible cellular protective mechanisms against the insult of formaldehyde, we have investigated this molecule's reactivity with both naturally occurring thiol compounds including glutathione and L-ascorbic acid. By UV measurements, for maldehyde was found to rapidly react with glutathione forming an S-hydroxymethyl covalent adduct. The adduct which was confirmed by NMR is transiently stable. Formaldehydissimilar to its reaction with dimedone. The reaction of formaldehyde with glutathione was reduced by 40% in the presence of an excess amount of L-ascorbic acid, due to the trapping of formaldehyde by L-ascorbic acid. The data suggest that L-ascorbic acid may have a possible in vivo role in the metabolism of formaldehyde, thereby protecting cellular glutathione from possible depletion.

  • PDF

Grape skin improves antioxidant capacity in rats fed a high fat diet

  • Lee, Su-Jin;Choi, Soo-Kyong;Seo, Jung-Sook
    • Nutrition Research and Practice
    • /
    • v.3 no.4
    • /
    • pp.279-285
    • /
    • 2009
  • This study was conducted to investigate the effect of dietary grape skin on lipid peroxidation and antioxidant defense system in rats fed high fat diet. The Sprague-Dawley rats were fed either control (5% fat) diet or high fat (25% fat) diet which was based on AIN-93 diet for 2 weeks, and then they were grouped as control group (C), control + 5% grape skin group (CS), high-fat group (HF), high fat + 5% grape skin group (HFS) with 10 rats each and fed corresponding diets for 4 weeks. The hepatic thiobarbituric acid reacting substances (TBARS) were increased in high fat group as compared with control group, but reduced by grape skin. The serum total antioxidant status, and activities of hepatic catalase and superoxide dismutase, xanthine oxidase and glucose-6-phosphatase were increased by supplementation of grape skin. Glutathione peroxidase activity was significantly higher in CS group than in C group. Grape skin feeding tended to increase the concentration of total glutathione, especially in control group. The ratio of reduced glutathione to oxidized glutathione was lower in high fat groups than in control groups. The ratio was increased by dietary supplementation of grape skin in control group. These results suggest that dietary supplementation of grape skin would be effective on protection of oxidative damage by lipid peroxidation through improvement of antioxidant defense system in rats fed high fat diet as well as rats with low fat diet.