Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.112

Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes  

Hewage, Susara Ruwan Kumara Madduma (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Piao, Mei Jing (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Kang, Kyoung Ah (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Ryu, Yea Seong (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Fernando, Pattage Madushan Dilhara Jayatissa (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Oh, Min Chang (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Park, Jeong Eon (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Shilnikova, Kristina (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Moon, Yu Jin (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Shin, Dae O (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Hyun, Jin Won (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Publication Information
Biomolecules & Therapeutics / v.25, no.4, 2017 , pp. 427-433 More about this Journal
Abstract
Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.
Keywords
Galangin; Reduced glutathione; Nuclear factor-erythroid 2-related factor; Glutamate-cysteine ligase catalytic subunit; Glutathione synthetase;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D. and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86.   DOI
2 Jaiswal, A. K. (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199-1207.   DOI
3 Kudugunti, S. K., Vad, N. M., Ekogbo, E. and Moridani, M. Y. (2011) Efficacy of caffeic acid phenethyl ester (CAPE) in skin B16-F0 melanoma tumor bearing C57BL/6 mice. Invest. New Drugs 29, 52-62.   DOI
4 Madduma Hewage, S. R., Piao, M. J., Kim, K. C., Cha, J. W., Han, X., Choi, Y. H., Chae, S. and Hyun, J. W. (2015) Galangin (3,5,7-trihydroxyflavone) shields human keratinocytes from ultraviolet Binduced oxidative stress. Biomol. Ther. (Seoul) 23, 165-173.   DOI
5 Marrot, L. and Meunier, J. R. (2008) Skin DNA photodamage and its biological consequences. J. Am. Acad. Dermatol. 58, S139-S148.   DOI
6 Martin, D., Rojo, A. I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., Ruiz de Galarreta, C. M. and Cuadrado, A. (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J. Biol. Chem. 279, 8919-8929.   DOI
7 Nioi, P., McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J. D. (2003) Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem. J. 374, 337-348.   DOI
8 Papaiahgari, S., Zhang, Q., Kleeberger, S. R., Cho, H. Y. and Reddy, S. P. (2006) Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS-EGFR-PI3K-Akt/ERK MAP kinase signaling in pulmonary epithelial cells. Antioxid. Redox Signal. 8, 43-52.   DOI
9 Surh, Y. J., Kundu, J. K. and Na, H. K. (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 74, 1526-1539.   DOI
10 Park, G. and Oh, M. S. (2015) Acceleration of heat shock-induced collagen breakdown in human dermal fibroblasts with knockdown of NF-E2-related factor 2. BMB Rep. 48, 467-472.   DOI
11 Zhang, H. and Forman, H. J. (2012) Glutathione synthesis and its role in redox signaling. Semin. Cell Dev. Biol. 23, 722-728.   DOI
12 Valacchi, G., Sticozzi, C., Pecorelli, A., Cervellati, F., Cervellati, C. and Maioli, E. (2012) Cutaneous responses to environmental stressors. Ann. N. Y. Acad. Sci. 1271, 75-81.   DOI
13 Waster, P. K. and Ollinger, K. M. (2009) Redox-dependent translocation of p53 to mitochondria or nucleus in human melanocytes after UVA-and UVB-induced apoptosis. J. Invest. Dermatol. 129, 1769-1781.   DOI
14 Wu, G., Fang, Y. Z., Yang, S., Lupton, J. and Turner, N. D. (2004) Glutathione metabolism and its implications for health. J. Nutr. 134, 489-492.   DOI
15 Cushnie, T. P. and Lamb, A. J. (2006) Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine 13, 187-191.   DOI
16 Afolayan, A. J. and Meyer, J. J. (1997) The antimicrobial activity of 3,5,7-trihydroxyflavoneisolated from the shoots of Helichrysum aureonitens. J. Ethnopharmacol. 57, 177-181.   DOI
17 Bolfa, P., Vidrighinescu, R., Petruta, A., Dezmirean, D., Stan, L., Vlase, L., Damiane, G., Catoi, C., Filip, A. and Clichici, S. (2013) Photoprotective effects of Romanian propolis on skin of mice exposed to UVB irradiation. Food Chem. Toxicol. 62, 329-342.   DOI
18 Chen, J. S., Huang, P. H., Wang, C. H., Lin, F. Y., Tsai, H. Y., Wu, T. C., Lin, S. J. and Chen, J. W. (2011) Nrf-2 mediated heme oxygenase-1 expression, an antioxidant-independent mechanism, contributes to anti-atherogenesis and vascular protective effects of Ginkgo biloba extract. Atherosclerosis 214, 301-309.   DOI
19 Ciolino, H. P. and Yeh, G. C. (1999) The flavonoid galangin is an inhibitor of CYP1A1activity and an agonist/antagonist of the aryl hydrocarbon receptor. Br. J. Cancer 79, 1340-1346.   DOI
20 Copple, I. M., Goldring, C. E., Kitteringham, N. R. and Park, B. K. (2008) The Nrf2-Keap1 defense pathway: role in protection against drug-induced toxicity. Toxicology 246, 24-33.   DOI
21 Drew, R. and Miners, J, O. (1984) The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem. Pharmacol. 33, 2989-2994.   DOI
22 Filomeni, G., Rotilio, G. and Ciriolo, M. R. (2002) Cell signalling and the glutathione redox system. Biochem. Pharmacol. 64, 1057-1064.   DOI
23 Harvey, C. J., Thimmulappa, R. K., Singh, A., Blake, D. J., Ling, G., Wakabayashi, N., Fujii, J., Myers, A. and Biswal, S. (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic. Biol. Med. 46, 443-453.   DOI
24 Ha, B. G., Park, M. A., Lee C. M. and Kim, Y. C. (2015) Antioxidant activity and anti-wrinkle effects of Aceriphyllum rossii leaf ethanol extract. Toxicol. Res. 31, 363-369.   DOI
25 Halliwell, B. (2007) Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147-1150.   DOI