• 제목/요약/키워드: reduce CO2 emissions

검색결과 376건 처리시간 0.025초

The effect of nuclear energy on the environment in the context of globalization: Consumption vs production-based CO2 emissions

  • Danish, Danish;Ulucak, Recep;Erdogan, Seyfettin
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1312-1320
    • /
    • 2022
  • The earlier studies have analyzed theoretical links between nuclear energy and carbon dioxide (CO2) emissions concerning territorial (or production-based) emissions. Here using the latest available dataset, this study explores the impacts of nuclear energy on production-based and consumption-based CO2 emission in the era of globalization for the Organization for Economic Co-operation and Development (OECD) countries. The Driscoll-Kraay regression method reveals that nuclear energy is beneficial for the reduction of production-based CO2 emissions. However, it is revealed that nuclear energy does not reduce consumption-based CO2 emissions that are traded internationally and hence not comprised in conventional production-based emissions (territory) inventories. Globalization tends to reduce both production-based and demand-based carbon emissions. Finally, Environmental Kuznets Curve (EKC) is validated for both kinds of CO2 emissions. The findings may deliver practical policy implications related to nuclear energy and CO2 emissions for selected countries.

Development of a BIM-based Carbon Dioxide Emission Estimation System -Focus on an Apartment in Korea-

  • Lee, Yong-Ju;Jun, Han-Jong
    • Architectural research
    • /
    • 제18권4호
    • /
    • pp.145-149
    • /
    • 2016
  • Recently, a goal was set globally to reduce the Carbon Dioxide ($CO_2$) emission at national levels by 30 % in comparison to the Business As Usual (BAU) pursuant to the United Nations Framework Convention on Climate Change. As construction industry accounts for as high as 40 % of the $CO_2$ emission by the entire industrial sector in Korea, efforts toward reducing emissions from the construction industry are essential. Buildings are mainly responsible for $CO_2$ emissions, and, to reduce the $CO_2$ emitted from the buildings, a fast and accurate calculation method is required to be introduced in the architectural design phase. If the standardized data based on Building Information Modelling (BIM) is utilized, $CO_2$ emissions can be calculated quickly and accurately during the design phase. However, it is difficult for the designers who lack the knowledge regarding $CO_2$ emissions to reduce and manage such emission during the planning and design phases of buildings by estimating the quantities of various materials and the corresponding $CO_2$ emissions. Accordingly, the objective of this study is to develop a BIM-based $CO_2$ emission estimation system for a rapid and objective analysis and verification of $CO_2$ emissions.

환경산업연관분석을 이용한 농작물의 이산화탄소 배출량 변화와 생산량, 재배면적의 상관성 분석 (Analysis on Correlation between CO2 Emissions and Production, Acreage of Crops using Environmental Input-Output Analysis)

  • 민슬기;손영환;노수각;박재성;봉태호
    • 한국농공학회논문집
    • /
    • 제56권1호
    • /
    • pp.61-70
    • /
    • 2014
  • South Korea is under pressure to reduce $CO_2$ emissions because of expanding request for reducing $CO_2$ emissions. In many industry sectors, $CO_2$ emissions were analyzed to reduce $CO_2$ emissions. But little effort in researching agricultural sector has been undertaken because it is recognized as environmentally friendly industry. The object of this research is to estimate $CO_2$ emissions of crops and analysis on correlation between $CO_2$ emissions and production, acreage of crops. In this study, environmental input-output analysis was used to estimate $CO_2$ emissions of agricultural sector and spearman correlation coefficient was used to analysis on correlation between $CO_2$ emissions and statics like production and acreage. As a result, rice, barley, pulses and horticultural specialities had correlation with acreage and correlation coefficients of these crops were 0.800~0.933. Regression equations about $CO_2$ emissions and acreage of rice, barley, pulses and horticultural specialities was made and $R^2$ of these equations were 0.615~0.929. Using equations, $CO_2$ emissions of rice, barley, pulses and horticultural specialities can be estimated with acreage.

Econometric Estimation of the Climate Change Policy Effect in the U.S. Transportation Sector

  • Choi, Jaesung
    • 한국기후변화학회지
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2017
  • Over the past centuries, industrialization in developed and developing countries has had a negative impact on global warming, releasing $CO_2$ emissions into the Earth's atmosphere. In recent years, the transportation sector, which emits one-third of total $CO_2$ emissions in the United States, has adapted by implementing a climate change action plan to reduce $CO_2$ emissions. Having an environmental policy might be an essential factor in mitigating the man-made global warming threats to protect public health and the coexistent needs of current and future generations; however, to my best knowledge, no research has been conducted in such a context with appropriate statistical validation process to evaluate the effects of climate change policy on $CO_2$ emission reduction in recent years in the U.S. transportation. The empirical findings using an entity fixed-effects model with valid statistical tests show the positive effects of climate change policy on $CO_2$ emission reduction in a state. With all the 49 states joining the climate change action plans, the U.S. transportation sector is expected to reduce its $CO_2$ emissions by 20.2 MMT per year, and for the next 10 years, the cumulated $CO_2$ emission reduction is projected to reach 202.3 MMT, which is almost equivalent to the $CO_2$ emissions from the transportation sector produced in 2012 by California, the largest $CO_2$ emission state in the nation.

원자력 및 신재생에너지 발전의 CO2 감축 비용 효율성 비교 (Comparison of Cost-Efficiency of Nuclear Power and Renewable Energy Generation in Reducing CO2 Emissions in Korea)

  • 이용성;김현석
    • 자원ㆍ환경경제연구
    • /
    • 제30권4호
    • /
    • pp.607-625
    • /
    • 2021
  • 본 연구는 우리나라 발전 부문의 원자력과 신재생에너지 발전의 온실가스 감축효과를 추정하고, 원자력 발전의 사고위험에 따른 외부비용을 포함한 발전 비용을 고려하여 두 발전원의 온실가스 감축비용의 효율성을 비교하였다. 모형의 추정결과, 원자력 및 신재생에너지 발전 1% 증가는 각각 0.744%와 0.127%의 CO2 배출량을 감축시키는 것으로 분석되었다. 이는 CO2 배출량을 1% 감축시키기 위해서는 원자력 발전은 1.344%, 신재생에너지 발전은 7.874% 증가시켜야 함을 의미한다. 추정된 계수와 원자력 발전의 외부비용 포함 발전비용을 사용하여 1%의 CO2 배출량 감축을 위한 총 비용을 도출한 결과, 전체 발전량이 1MWh로 가정할 때 CO2 배출량 1%를 감축시키기 위한 원자력 발전비용은 외부비용에 따라 0.72~1.49달러로 계산되었으며, 신재생에너지 발전비용은 6.49달러로 나타났다. 이를 2020년 우리나라 총 화석연료 발전량(352,706GWh)을 기준으로 계산할 경우, 원자력 발전은 2.54억~5.26억 달러, 신재생에너지 발전은 22.89억 달러로 신재생에너지 발전이 원자력 발전보다 4.35~9.01배의 비용이 더 소요되는 것으로 분석되었다. 따라서 발전 부문의 온실가스 감축을 위해서는 원자력 발전이 신재생에너지 발전에 비해 높은 비용 효율성을 가지는 것을 알 수 있었다.

폐미분말을 원료로 한 저탄소형 재생시멘트의 CO2배출량 저감평가 (Evaluation of Reduction of CO2 Emission Achieved by Using Low-carbon Recycled Cement with Cementitious Waste Powder)

  • 권은희;안재철;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.250-251
    • /
    • 2014
  • With the recent movement toward sustainable development, many efforts have been made to reduce environmental loads in various domains of industry. In particular, a great deal of research and technology development has been underway on approaches to reducing industrial waste and the emission of greenhouse gases. For this reason, a quantitative analysis of the reduction in CO2 emission that could be achieved by replacing limestone material with cementitious waste powder was performed in this study. Through the analysis, it was found that CO2 emissions were reduced by up to 50 percent compared with the scenario in which OPC was used, which suggests that it is possible to reduce global CO2 emissions by approximately 5percent, or by 446.4 Tg of the 965 Tg of CO2 emissions generated by the cement industry, in the total global CO2 emissions of 19300Tg.

  • PDF

자연친화적인 급내리막 직선부에서 GHG 배출지표에 근거한 속도유지표준화 형태의 교통정온화 (Effect of Traffic Calming Using Speed-Maintained Standardization on Environment-Friendliness of Downward Slope Location based on GHG Emission Indicators)

  • 홍수정;오홍운
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.103-110
    • /
    • 2016
  • PURPOSES: In this paper, the effectiveness of speed-maintained standardization in road geometry on environmental impact at a downward slope location, based on greenhouse gas (GHG) emission indicators, was studied. Specifically, the aim of this study was to ascertain whether speed-maintained standardization resulted in decreased $CO_2$ emissions as well as noise pollution, due to reduced vehicle speeds. METHODS : In this study, speed-maintained standardization in road geometry was proposed as a means to reduce vehicle speeds, with a view to reducing $CO_2$ emissions and noise pollution. This technique was applied at a downward slope location. The vehicle speeds, $CO_2$ emissions, and noise levels before and after application of speed-maintained standardization were compared. RESULTS: It was found that speed-maintained standardization was effective as a means to reduce speed, as well as $CO_2$ emissions and noise pollution. By applying speed-maintained standardization, it was confirmed that vehicle speeds were reduced consistently. As a result, $CO_2$ emissions and noise levels were decreased by 9% and 11%, respectively. CONCLUSIONS : This study confirmed that speed-maintained standardization in road geometry is effective in reducing vehicle speeds, $CO_2$ emissions, and noise levels. Moreover, there is further scope for the application of this method in the design of roads in urban and rural areas, as well as in the design of highways.

Energy Efficiency and CO2 Emissions of the Transportation System of Kazakhstan: A Case of Almaty

  • Yessekina, Aiman;Urpekova, Amina
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제2권3호
    • /
    • pp.41-46
    • /
    • 2015
  • Energy saving in the transport sector in the framework of the annual growth of energy consumption, the degree of negative impact on the environment and the amount of harmful emissions are becoming increasingly important. The article considers the world tendencies of energy consumption in transportation sector and emphasizes its dependency from oil. Also article describes the dynamics of energy use and CO2 emissions from transport of city Almaty. In conclusion authors identify a number of problems in the transport sector, which hinder the implementation of energy efficiency measures and measures to reduce CO2 emissions.

폐기물 소각시설의 이산화탄소 (CO2) 연속측정 실효성에 관한 연구 (A Study on the Effectiveness of Continuous CO2 Emission Monitoring in a Waste Incinerator)

  • 오승환;강임석;정동희
    • 한국기후변화학회지
    • /
    • 제9권3호
    • /
    • pp.273-281
    • /
    • 2018
  • The purpose of this study is to consider the effectiveness of continuous $CO_2$ emission monitoring in waste incinerator. To prevent global warming, many countries are trying to reduce $CO_2$, the main greenhouse gas. Currently, Korea is implementing an emission trading scheme to reduce $CO_2$, and waste incinerators are included in this scheme as major $CO_2$ sources. However, when using waste incinerators, $CO_2$ is discharged during incineration of various types of wastes, therefore it is very difficult to calculate the amount of emissions according to IPCC guidelines. In addition, the estimation of $CO_2$ emissions by calculation is known to lack of accuracy comparing with actual emissions. Currently, Korea is operating CleanSYS, which enables continuous measurement of gases emitted into the atmosphere. Therefore, it is possible to estimate the $CO_2$ emissions of waste incineration facilities. The IPCC, which published $CO_2$ emission calculation guidelines, recognizes that direct measurement of emission is a more advanced method in cases of various $CO_2$ emission sources such as a waste incineration facility. Also, Korean emission trading scheme guidelines allow estimation of $CO_2$ emissions by continuous measurement at waste incineration facilities. Therefore, this study considers the effectiveness of a direct measurement method by comparing the results of CleanSYS with the calculation method suggested by the IPCC guidelines.

주거건축에서 탄소를 줄이기 위한 에너지 절감 요소에 관한 연구 (To reduce carbon from residential architecture Research on energy-saving elements)

  • 박재희
    • KIEAE Journal
    • /
    • 제9권5호
    • /
    • pp.47-52
    • /
    • 2009
  • Currently, the environmental issue is of great urgency and sensitivity to the future of our planet. Global warming caused by increased CO2 concentration has an alarming impact on the earth's fragile environment. Droughts throughout the world are causing crop failures. Wildfires now burn with far greater rage. Melting ice caps and glaciers are causing floods. Sea levels are rising. Warm unseasonable winters are threatening our fragile eco-systems. Global warming is no longer a theory; it is an obvious fact we are confronted with every day, and the only way we can prevent it is to take action now. The need to reduce CO2 emissions and try to become carbon neutral is of national importance and leadership. We have become so reliant on fossil fuels that nearly everything we do generates CO2 emissions; from our modern farming practices to transport, to the electricity used to turn on a light, boil water in a kettle or cook our meals. A reduction of 50% of CO2 emissions can easily be achieved by decreasing the energy amount used. We tracked the carbon footprint throughout the electricity and heating energy use in homes and confirmed the amount of carbon emissions according to its consumptions. In order to reduce the carbon generation from housing constructions, such as Passive House concept of buildings or low energy buildings, we must adjust its applications best fit to our conditions. And technical elements should be applied to improve our conditions, and the methodology should be actively sought. Most of all, each individual's recongnition who uses these elements is more important than any other solutions.