• Title/Summary/Keyword: red lamp

Search Result 133, Processing Time 0.027 seconds

Variation of glucosinolate contents of 'Sinhongssam' grown under various light sources, periods, and light intensities (광원의 종류, 주기와 세기의 변화에 따른 '신홍쌈' 배추 내 글루코시놀레이트 함량)

  • Lee, Geon-Ryoung;Kim, Young Jin;Chun, Jin-Hyuk;Lee, Min-Ki;Ryu, Dong-Ki;Park, Suhyoung;Chung, Sun-Ok;Park, Sang Un;Lim, Yong-Pyo;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.125-133
    • /
    • 2014
  • The variation of glucosinolates (GSLs) in Chinese cabbage ('Sinhongssam') (Brassica rapa L. spp. pekinensis) cultivated under lights to control plant growth conditions was evaluated at different development stages. Under experimental conditions in plant factory system, plant growth conditions including light, temperature, and nutrients were designed to enhance GSLs. The variation of glucosinolates (GSLs) in Chinese cabbage ('Sinhongssam') (Brassica rapa L. spp. pekinensis) cultivated under lights to control plant growth conditions was evaluated at different development stages. Under experimental conditions in plant factory system, plant growth conditions including light, temperature, and nutrients were designed to enhance GSLs. The contents of GSLs were quantified in Chinese cabbage according to different light sources (Red+White, RW; Red+Blue+White, RBW, Fluorescence lamp, FL) at development stages (28, 42, and 56 days after sowing, DAS) using HPLC. Nine GSLs including five aliphatic (progoitrin, sinigrin, glucoalyssin, gluconapin, and glucobrassicanapin) three indolyl (glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin), and one aromatic (gluconasturtiin) GSLs were identified based on peak retention time in previous results of our laboratory. GSL contents were higher in RBW (36.55) and lower in FL ($15.24{\mu}mol/g/\;DW$). Results revealed that GSL contents were higher under controlled photoperiods (20/4 h) ($58.35{\mu}mol/g\;DW$) and controlled light intensity ($160{\mu}mol/m^2/s$) ($34.02{\mu}mol/g\;DW$), respectively. Lower amount of progoitrin and comparatively higher amount of glucobrassicin and gluconasturtiin was noted in Chinese cabbage cultivated under FL light (2.38, 9.82, and 2.10) at 42 DAS, photoperiod 20/4 h (3.16, 2.52, and 1.30) at 28 DAS, and light intensity at $130{\mu}mol/m^2/s$ (2.28, 2.24, and $1.51{\mu}mol/g\;DW$) at 42 DAS. Therefore FL light, photoperiod (20/4 h), and light intensity ($130{\mu}mol/m^2/s$) were considered as most suitable for the enhancement of GSLs in Chinese cabbage.

Effects of Light Quality and Lighting Type Using an LED Chamber System on Chrysanthemum Growth and Development Cultured In Vitro (LED Chamber System을 이용한 광질 및 광조사 방법 제어가 국화 배양소식물체의 생장에 미치는 영향)

  • Heo, Jeong-Wook;Lee, Yong-Beom;Chang, Yu-Seob;Lee, Jeong-Taek;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.374-380
    • /
    • 2010
  • This experiment was carried out to investigate the effect of light qualities and lighting types provided by LED Chamber System which designed by Rural Development Administration on growth and development of Chrysanthemum (Dendranthema grandiflorum L., cv. 'Cheonsu') plantlet cultured in vitro. The explants of single-node cuttings were exposed to monochromic or mixture radiation of blue, red, or green under continuous and intermittent lighting for 42 days. The intermittent lighting of 20 sec. on and off per minute significantly stimulated shoot elongation with lower number of internodes compared with continuous lighting treatments. However, continuous blue, red, or green light gave greater dry weight comparing the intermittent lighting, and the lowest weight was recorded at the continuous fluorescent lamp. Otherwise, the plantlet growth in dry weight or leaf area was inhibited by the green light controlled at 50 times intermittence but internode elongation was significantly increased. These results showed that the plantlets were successfully grown under the LED Chamber System controlled with different light qualities and lighting types. Quantitative growth of the plantlets was improved under the shorter photoperiod with a intermittent lighting cycle compared with continuous lighting using fluorescent lamps. It is concluded that the growth and development of in vitro plantlets such as single-node cuttings can be achieved by the controlling of light quality or lighting type during the photoperiod per day with a lower electric cost compared with conventional continuous lighting system.

Growth and Phytochemical Contents of Ice Plant as Affected by Light Quality in a Closed-type Plant Production System (완전제어형 식물생산시스템에서 광질에 따른 아이스플랜트의 생육과 기능성물질 함량)

  • Kim, Young Jin;Kim, Hye Min;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.878-885
    • /
    • 2016
  • A study was conducted to examine the effects of light quality on the growth and phytochemical contents of ice plant in a closed-type plant production system. Seeds were sown in a 128-cell plug tray using rockwool. The seedlings were then transplanted into a deep floating technique system with recirculating nutrient solution (EC $1.5dS{\cdot}m^{-1}$, pH 6.5) in a closed-type plant production system. The nutrient solution was supplied at two weeks after transplanting with 2.0 mM NaCl concentration in all treatments for the development of the bladder cells. The three light sources with different light qualities used were as followed; FL (fluorescent lamps), combined RW LED (red:white = 7:3), and combined RBW LED (red:blue:white = 8:1:1) at $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD with a photoperiod of 14/10 hours (light/dark). The results showed that the FL treatment had the greatest growth enhancement effects on the leaf area and the fresh and dry weights of the shoots and roots. The SPAD values were significantly higher under the FL and RBW LED treatments, at 29.8 and 30.6, respectively. No significant difference was observed in salinity under all treatments. Chlorophyll fluorescence was significantly higher under the FL treatment. The total phenol content and antioxidant activity were the highest under the RBW LED treatment. The total flavonoid content was significantly higher under the RBW LED and FL treatments. Hence, the results indicate that the growth of ice plant was maximized under the FL treatment. The phytochemical contents were maximized under the RBW LED treatment.

Comparing Photosynthesis, Growth, and Yield of Paprika (Capsicum annuum L. 'Cupra') under Supplemental Sulfur Plasma and High-Pressure Sodium Lamps in Growth Chambers and Greenhouses (황 플라즈마 및 고압나트륨 램프의 보광에 따른 생육상 및 온실에서의 파프리카 광합성 및 생산성 비교)

  • Park, Kyoung Sub;Kwon, Dae Young;Lee, Joon Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2018
  • Supplemental lighting with artificial light sources is a practical method that enables normal growth and enhances the yield and quality of fruit vegetable in greenhouses. The objective of this study was to investigate the effect of sulfur plasma lamp (SP) and high-pressure sodium lamp (HPS) as supplemental lighting sources on the growth and yield of paprika. For investigating the effectiveness of SP and HPS lamps on paprika, the effects of primary lighting on plant growth were compared in growth chambers and those of supplemental lighting were also compared in greenhouses. In the growth chamber, plant height, leaf area, stem diameter, number of leaves, fresh weight, and dry weight were measured weekly at SP and HPS from 2 weeks after transplanting. In the greenhouse, no supplemental lighting (only sunlight) was considered as the control. The supplemental lights were turned on when outside radiation became below $100W{\cdot}m^{-2}$ from 07:00 to 21:00. From 3 weeks after supplemental lighting, the growth was measured weekly, while the number and weight of paprika fruits measured every two weeks. In the growth chamber, the growth of paprika at SP was better than at HPS due to the higher photosynthetic rate. In the greenhouse, the yield was higher under sunlight with either HPS or SP than sunlight only (control). No significant differences were observed in plant height, number of node, leaf length, and fresh and dry weights between SP and HPS. However, at harvest, the number of fruits rather than the weight of fruits were higher at SP due to the enhancement of fruiting numbers and photosynthesis. SP showed a light spectrum similar to sunlight, but higher PAR and photon flux sum of red and far-red wavelengths than HPS, which increased the photosynthesis and yield of paprika.

Effect of Artificial Light Sources on the Growth of Apple Rootstock M.9 Seedling (인공광원이 사과 대목 M.9 묘 생육에 미치는 영향)

  • So, Eun Hee;An, Jin Hee;Kim, Jae Kyung;Yoon, Yeo Joong;Park, So Jeong;Na, Jong-Kuk;Choi, Ki Yong
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.341-348
    • /
    • 2018
  • To investigate the effect of light sources on the growth and photosynthesis of the dwarf apple rootstock M.9 for the production of standard seedlings, the plants were cultivated in a controlled environment for 6 weeks. The sources of light are six treatments [Red (R), Blue (B), White (W), RBUV (R7B3 containing UV-A), RBW (R3B1W1), SMF (high pressure sodium + metal halide + fluorescent lamp) under $154{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Growth characteristics of apple seedlings varied depending on artificial light source at 3 weeks and 6 weeks. The plant height of apple seedling was high in the R, RBUV, RBW, and SMF light sources at 3 weeks, and in the R light at 6 weeks. There was no significant difference on stem diameter among the treatments at 3 weeks, but showed high in RBUV and RBW light at 6 weeks. Leaf number was the highest in RBUV light at 3 and 6 weeks. The chlorophyll content (SPAD value) was high in the B and RBUV light at 3 weeks, but it was not significant at 6 weeks. The growth rate to height of the R light (1.12mm/day) was the highest among the treatments, followed by RBUV, RBW, SMF, W and then B. Leaf area was the highest in RBUV and RBW lowest in B. Specific leaf area was high in W and fresh and dry weight were high in RBUV. The photosynthetic rate at 6 weeks was highest in the B and lowest in the R. Stomatal conductivity and transpiration rate were higher in the B and W compared to the other light sources. Therefore, we are considered that light sources for growth of dwarf apple rootstock M.9 seedlings are suitable the R, RBUV, and RBW light sources with a high mixing ratio of Red and Red +Blue.

Increased Growth by LED and Accumulation of Functional Materials by Florescence Lamps in a Hydroponics Culture System for Angelica gigas (당귀의 수경재배에서 LED 광원에 의한 생장 증가와 형광등에 의한 기능성물질 축적)

  • Lee, Gong-In;Kim, Hong-Ju;Kim, Sung-Jin;Lee, Jong-Won;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • Angelica gigas, belonging family Apiaceae, is a perennial and famous medical plant growing in Korea, Japan, and China. The aims of this study was to analyze the growth and accumulated Decursin and its precursor Decursinol angelate of A.gigas grown under fluorescent lamp and LED. A. gigas 'Manchu' were sowed and managed for seedlings stage in a glass house for 4 weeks. One hundred twenty seedlings with 3 true leafs were transplanted at an ebb & flow system with fluorescent lamp and LED [red: peak wavelength 660nm, blue: peak wavelength 455 nm, white = 3:2:4 ratio] irradiated at $180{\pm}7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at the top of plant canopy for 5 weeks. The number of leaves increased by 13.5% in the LED treatment, though it is not statistically significant. Leaf length/width ratio of A. gigas grown under the fluorescent lamps was 24% bigger than the LED treatment and also the stem was 13% larger. Maximum root length was similar to both groups. Fresh weight and dry weight of shoots grown under the LED increased by 50% and 42% and the both weights of roots increased by 125% and 45%, respectively. The contents of Decursin and Decursinol angelate grown under the florescent lamps were larger than LED by 188% and 27% in shoot and 78% and 8% in root. The contents of Decursin and Decursinol angelate per plant grown under LED and florescent lamps were 132mg and 122mg. In conclusion, functional materials in A. gigas were increased by florescent light and its growth was promoted by LEDs light.

Effect of LED Irradiation on Growth Characteristids of Ginseng Cultivated in Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Yoon, Du Hyeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.45-45
    • /
    • 2019
  • This experiment was carried out using artificial clay and LED in the plastic film house (irradiation time: 08:00~18:00/day). Seedlings (n = 63 per $3.3m^2$) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity. The average air temperature from April to September was $12.3^{\circ}C$ $-26.0^{\circ}C$ and it was the the highest at $26.0^{\circ}C$ in August. The test area where fluorescent lamp was irradiated tended to be somewhat higher than the LED irradiation area. The chemical properties of the test soil are as follows. pH levels was 5.3~5.5, EC levels 0.45~0.52 dS/m and OM levels 33~37%. The total nitrogen content was 0.35~0.47% and the available $P_2O_5$ contents was 13.7~16.0 mg/kg, which was lower than the suitable level of 70~200 mg/kg. Exchangeable cations K and Mg contents were within acceptable ranges, but the Ca contents was $28{\sim}38cmol^+/kg$ levels higher than the permissible level ($2{\sim}6cmol^+/kg$). Germination of ginseng leaves took 8~9 days and the overall germination rate was 70~75%. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PAR (Photosynthetic Action Radiation) value, illuminance and solar irradiation. Photosynthetic rate was also increased with higher light intensity was investigated at $1.7{\sim}3.2{\mu}mol\;CO_2/m^2/s$. Leaf temperature ($23.7{\sim}24.8^{\circ}C$) by light intensity was the same trend. The growth of aerial parts (plant height etc.) were generally excellent when irradiated with 3 times the light intensity, the growth of the ginseng aerial parts were excellent as follows. The plant height was 42.6 cm, stem length was 25.2 cm, leaf length was 9.6 cm and stem diameter was 5.0 mm. The growth of underground part (root length etc.) was the same, and the root length was 24.4 cm, the tap root length was 6.0 cm, diameter of taproot was 18.2 mm and the fresh root weight was 17.2 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping off occurred 2.2~3.6% and incidence ratio of rusty root ginseng was 14.6~20.7%. Leaf discoloration rate was 13.7~48.9% and increased with increasing light intensity. Ginsenoside content of ginseng by light intensity is under analysis.

  • PDF

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF