• Title/Summary/Keyword: red ginseng saponin

Search Result 312, Processing Time 0.026 seconds

Biochemical and Histological Charaeteristics of Inferior Red Ginseng (불량홍삼(내백삼)의 생화학적 및 조직학적 특성)

  • Do, Jae-Ho;Kim, Sang-Dal;Seong, Hyeon-Sun
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.256-263
    • /
    • 1985
  • In order to investigate the inferior factor of red ginseng quality, the contents of various chemical components, physico-chemical properties and arrangement state of ginseng cells were observed. Contents of total reducing sugar, reducing sugar, crude protein, crude fibre and specific gravity of inside white part of red ginseng were less than those of normal part. But differences in content of crude saponin, HPLC pattern of ginsenosides and reducing ability for DP P H(1,1-dipheny 1-2-picrylhydrazyl) between normal and inside white part of red ginseng were not found. The optical density of 1 water extract of normal part of red ginseng did not differ from that of inside white 1 part of red ginseng, but the visible and UV absorbance of acid hydrolyzate of normal red ginseng showed higher than those of inside white part of red ginseng. The differences in the internal color and tissue of normal and inside white part of red ginseng were easily found with naked eye, and by the microscopic fractography, the orangement state of ginseng cell in the inside white part of red ginseng was less dense than that in normal red ginseng.

  • PDF

Comparison of the Content of Saponin and Mineral Component in Korean Red Ginseng and Other Red Ginseng (한국산 및 외국산 홍삼의 사포닌 및 무기물 성분 비교)

  • Lee, Jong-Won;Lee, Seong-Kye;Do, Jae-Ho
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.196-201
    • /
    • 2002
  • This study was carried out to compare the contents of saponins and minerals component in Korean Red Ginseng (Heaven, Earth, Good grade), North Korean Red Ginseng (Heaven, Earth, Good grade), Japanese Red Ginseng (Oonju, Sinju 1, 2, 3 grade, respectively) and Chinese Red Ginseng (Seokju, Gilim, 1, 2, 3 grade, respectively). Crude saponin contents were different on according to the grade and cultivation area, and was 3.05-3.76% in Korean Red Ginseng, 2.09-3.21% in North Korean Red Ginseng, 2.82-3.71% in Chinese Seokju Red Ginseng, 2.72-3.62% in Chinese Gilim Red Ginseng, 2.11-2.44% in Japanese Oonju Red Ginseng, 2.18-2.87% in Japanese Sinju Red Ginseng, and the amount of ginsenoside-Rb1, -Re, -Rg$\_$1/ in Korean Red Ginseng were higher than those of North Korean, Chinese and Japanese Red Gingsen. The contents of mineral components were similar, but La, Na and Sn component in Korean Red Ginseng showed the higher amount than those of other Red Ginsengs.

Effect of Blue and Red LED irradiation on Growth Characteristics and Saponin Contents in Panax Ginseng C. A. Meyer (청색과 적색 LED 처리가 인삼의 생육 및 사포닌 함량에 미치는 영향)

  • Kim, Min-Jeong;Li, Xiangguo;Han, Jin-Soo;Lee, Seong-Eun;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.187-191
    • /
    • 2009
  • This study was conducted to assess the response of LED (Light-emitting diode) irradiation on the growth characteristics and saponin contents of Panax ginseng C. A. Meyer. LED irradiation showed a positive effect for most of the parameters studied. The content of chlorophyll a in leaves was increased by 4.9$\sim$36.5%, under LED and fluorescent light conditions compared to the control. The content of chlorophyll b was also increased by 44.4$\sim$55.6% under blue and red LED compared to the control except under the red plus blue LED condition. The shoot and root weight were increased by $20\sim60%$ and $14.8\sim59.3%$, respectively under LED and fluorescent light conditions compared to the control. The total saponin content was increased by 1.8% under blue LED compared to the control, while total saponin content was decreased by 8.8$\sim$11.5% under red LED, red plus blue LED and fluorescent light conditions.

Effects of pH and High Temperature Treatment on the Changes of Major Ginsenosides Composition in Korean Red Ginseng Water Extract (pH 및 고온 열처리가 홍삼물추출물의 주종 사포닌 성분변화에 미치는 영향)

  • Choi, Keum-Hee;Kwak, Yi-Seong;Rhee, Man-Hee;Hwang, Mi-Sun;Kim, Seok-Chang;Park, Chae-Kyu;Han, Gyeong-Ho;Song, Kyung-Bin
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • This study was carried out to investigate the changes of ginsenosides composition in Korean red ginseng water extract (RGWE) after heated with high temperatures above $100^{\circ}C$. RGWEs were adjusted with pH 3.0, pH 7.0 and pH 10.0, respectively, and then heated at 100,110 and $120^{\circ}C$ for 30 minutes by using autoclave. Total ginsenosides of RGWE treated with heating showed decreasing tendency when compared with control. By TLC analysis, decreasing effect of ginsenosides in RGWE were significantly observed in the acidic condition of pH 3.0, particulary. By HPLC analysis, total ginsenoside of control showed 1.89%, while those of RGWE treated with 100, 110 and $120^{\circ}C$ showed 1.22, 1.05 and 0.97%, respectively. The ratio of protopanaxadiol (PD) to protopanaxatriol (Pr) saponins in control was 1.89, while that of PD/PT in treated RGWEs were level of 1.33 to 1.47. By the result of decreased ratio of PD/PT in RGWE, it was considered that PD type saponin such as ginsenoside$-Rb_{1}$, $-Rb_{1}$, -Rc and -Rd was more unstable than PT type saponin such as ginsenoside-Re and Rg against high temperature heating above $100^{\circ}C$.

Effect of Crude saponin from Red-ginseng efflux on Blood biochemical parameters in Rats Acutely Exposed to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD) (홍삼유출액으로부터 분리한 조사포닌이 TCDD (2,3,7,8-Tetrachlorodibenzo-ρ-dioxin)로 급성독성을 유도한 흰쥐의 혈액 생화학지수에 미치는 영향)

  • Kwak, Yi-Seong;Kyung, Jong-Soo;Song, Young-Bum;Wee, Jae-Joon;Park, Jong-Dae
    • Journal of Ginseng Research
    • /
    • v.30 no.1
    • /
    • pp.8-14
    • /
    • 2006
  • This study was carried out to investigate the protective effect of crude saponin from red ginseng efflux (RGE-CS) on biochemical parameters in male rats acutely exposed to 2,3,7,8-tetrachlorodibenzo-$\rho$-dioxin (TCDD). Forty male rats ($200{\pm}20g$) were divided into 4 groups. Normal control group (NC) received vehicle and saline; only TCDD-treated group (TT) received TCDD ($5{\mu}g/kg$, single dose) intrperitoneally; RGE-CS 20 received 20 mg/kg of crude saponin i.p. for 4 weeks from 1 week before TCDD-exposure; RGE-CS 40 also received 40 mg/kg of crude saponin i.p. for 4 weeks from 1 week before TCDD-exposure. Body weight of TT group was significantly decreased after TCDD-exposure. However, body weight of crude saponin groups increased throughout the experimental period, although the increasing rate was slower than that of NC group. Decrease in body weight was not observed during the experimental period in RGE-CS 40. Increases in triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), AST, ALT and $Fe^{2+}$ levels by TCDD intoxication were significantly attenuated by the RGE-CS treatment. Decrease in glucose, amylase, lactate dehydrogenase (LDH) and creatinine kinase (CK) by TCDD also were inhibited by the RGE-CS. These results suggest that saponin from red-ginseng efflux might be a useful protective agent against TCDD, an endocrine disrupter.

Biological Activities of Non-saponin Compounds Isolated from Korean Red Ginseng (고려홍삼에서 분리된 비사포닌 화합물의 생물활성)

  • Hiromichi Okuda;Lee, Sung-Dong;Yukinaga Matsuura;Yinan Zheng;Keizo Sekiya;Takeshi Takaku;Kenji Kameda;Kumi Hirose;Kazuhiro Ohtani;Osamu Tanaka;Toshiie Sakata
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.157-161
    • /
    • 1990
  • We have been isolating various physiologically active substances from non-saponin fraction of Korean Red Ginseng. These are adenosine, pyre-glutamic acid, dencichine and acidic polysaccharide. Adenosine and pyre-glutamic acid are known to inhibit epinephrine-induced lipolysis in fat cells and stimulate the insulin-mediated lipogenesis. In addition to these actions, adenosine was found to inhibit both norepinephrine- and histamine-induced aorta constriction, and pyre·glutamic acid inhibits angiotensin-converting enzyme. Dencichine stimulated histamine-induced aorta constriction. Finally, acidic polysaccharide was found to inhibit both lipolytic and anorexigenic actions of Toxohormone-L. Based on these experimental results, I presented a briefreview on these compounds isolated from non-saponin fraction of Korea Red Ginseng.

  • PDF

Chemical and Biochemical Studies on Non-saponin Constituents of Korean Ginseng (고려인삼의 비사포닌 성분에 대한 화학적 및 생화학적 연구)

  • Han, Byung-Hoon;Park, Myung-Hwan;Han, Yong-Nam
    • Journal of Ginseng Research
    • /
    • v.16 no.3
    • /
    • pp.228-234
    • /
    • 1992
  • There has been general tendency to explain the traditional ginseng efficacy through the pharmacological and biochemical activities of ginsenosides. However, when we analyze the pharmacological and biological data on ginseng reported yet, we can easily arrive at the conclsion that most of the data on pharmacological and biological activities must have been obtained using impure ginsenoside samples, which should contain some non-saponin constituents as impurities. Based on the above back-ground, the non-saponin constituents of ginseng were studied in our laboratory. Phenolic substances including Maltol, Vanillic Acid, Salicylic Acid, Ferrulic Acid and Caffeic acid and impure ginsenoside samples were found to show strong antioxidant and anti-fatigue activities, while pure ginsenosides were devoid of the activities. Maltol, one of antioxidant components In Korean red ginseng drew a special interest due to its very low pro-oxidant activity. The antioxidant activity of ginseng may be considered as scientific basis for the antiageing activity which was described in traditional medicinal material book as "long-term medication of ginseng will improve bio-efficiency and extend life-span" The lignin components, another non-saponin consitutents, isolated from ginseng extract In our laboratory may eplain the hepato-protective activity of ginseng which has been repeatedly rtaimed as one of the efficacies of ginsenosides. The P-carboline alkaloids isolated in our laboratory as one of the non-saponin constituents of ginseng may play some pharmacological activities which should also be investigated. Present paper will include chemistry and biochemical aspects of the non-saponin constituents of ginseng with special interests for the explanation of traditional ginseng efficacy on modern scientific basis.fic basis.

  • PDF

The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo

  • Park, Soo-Jeung;Lee, Dasom;Kim, Dakyung;Lee, Minhee;In, Gyo;Han, Sung-Tai;Kim, Sung Won;Lee, Mi-Hyang;Kim, Ok-Kyung;Lee, Jeongmin
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.362-372
    • /
    • 2020
  • Background: The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods: We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results: KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion: Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.

Quality Control of Ginseng Products(Part I) - The saponins isolated from ginseng roots and leaves - (인삼제품(人蔘製品)의 품질개량(品質改良)에 관(關)한 연구(硏究) (제일보(第一報)) - 인삼근(人蔘根) 및 엽(葉) Saponin의 비교연구(比較硏究) -)

  • Cho, Han-Ok;Cho, Sung-Hwan;Kim, Soo-Ja
    • Applied Biological Chemistry
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 1979
  • The saponins isolated form the herb of Panax ginseng C.A. Meyer were investigated as compared with ginseng root saponins. By adopting DEAE cellulose ion exchange chromatography the pure saponins were isolated from Korean ginseng roots and leaves. The ginseng root and leaf saponins showed some differences in the pattern of the two-dimensional thin layer chromatogram. The ratio of panaxadiol to panaxatriol in the saponins was 1.7 in the roots and 3.5 in the leaves. Infra-red spectrum of ginseng leaf saponins isolated by liquid chromatography was identical with that of root saponins.

  • PDF

Relationship of Saponin and Non-saponin for the Quality of Ginseng (인삼의 품질과 약리활성 물질과의 상관성)

  • Nam, Gi-Yeol;Go, Seong-Ryong;Choe, Gang-Ju
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.274-283
    • /
    • 1998
  • It has generally been accepted that quality of ginseng should be determined not by the content of a single component but by composition and balance of total active principles. However, there still can be an exception with a product in which a given ginsenoside is used for the treatment of a specific disease. Although ginsenosides have been regarded to be major active components of ginseng and employed as index components for the quality control, it does not consistent with the traditional concept on ginseng quality creterion; main root has been more highly appreciated than the lateral or fine root. Content of ginsenosides in the lateral or fine root is much higher than that in main root. However, the ratio of protopanaxadiol (PD) and protopanaxatriol (PT) saponins existing in various part of ginseng root is greatly different. The ratio of PD/PT saponins in main root is well balanced but the thinner the root is the higher the ratio. Thus far, a total of 34 different kinds of ginsenosides have been isolated from Korean (red) ginseng, and their pharmacological activities were elucidated partly. Interestingly, different ginsenoside shows similar or contrary effects to each other in biological systems, thus indicating the significance of absolute content of single ginsenoside as well as compositional patterns of each ginsenoside. Therefore, pharmacological activities of ginseng should be determined as a wholly concept. In these regards, standardization of ginseng material (fresh ginseng root) should be preceded to the standardization of ginseng products because ginsenoside content and non-saponin active principles such as polysaccharides and nitrogen (N)-containing compound including proteins are significantly different from part to part of the root. In other words, the main root contains less ginsenosides than other lateral or fine roots. Contents of polysaccharides and N-containing compound in main root is higher. However, the quality control of ginseng products focused on non-saponin compounds has limitation in applying to the analytical method, because of the difficult chemical analysis of these compounds. Content of ginsenosides, and ratios of PD/PT and ginsenoside Rb,/Rg, are inversely proportional to the diameter of ginseng root. Therefore, these can be served as the chemical parameters for the indirect method of evaluating from what part of the root does the material originate. Furthermore, contents of polysaccharides and N-containing compounds show inverse relationship to saponin content. Therefore, it seems that index for analytical chemistry of saponin can be applied to the indirect method of evaluating not only saponin but also non-saponin compounds of ginseng. From these viewpoints, it is strongly recommended that quality of ginseng or ginseng products be judged not only by the absolute content of given ginsenoside but also by varieties and compositional balance of ginsenosides, including contents of non-saponin active principles.

  • PDF