• Title/Summary/Keyword: red ginseng products

Search Result 211, Processing Time 0.033 seconds

Physiochemical Properties of Chicken Breast Sausage with Red Ginseng Marc Powder

  • Shin, Sun-Hwa;Choi, Won-Seok
    • Food Science of Animal Resources
    • /
    • v.42 no.3
    • /
    • pp.486-503
    • /
    • 2022
  • This study explored the physiochemical and rheological properties of chicken breast sausages containing red ginseng marc (RGM) which contains useful components but is discarded. When compared to the control group, the use of RGM significantly increased the water holding capacity (WHC) as the particle size increased. As for the change in color value, addition of RGM resulted in an increase in a and b values; as the quantity was increased and particle size decreased, the a and b values increased significantly. The smaller the particle size of RGM, the greater was the radical scavenging activity. According to the results of the measurement of the viscoelasticity of chicken breast sausage containing RGM, the G' and G'' values increased with increasing amounts of RGM and particle size. Neither the addition of RGM nor its amount or particle size had any significant effect on gel formation temperature. The texture profile analysis (TPA) experiment examined the average TPA measurements of each sample under different measurement conditions, and no significant difference between the RGM and control groups were observed. In conclusion, when RGM is used in chicken breast sausages, the WHC, antioxidant capacity, and viscoelastic properties are affected. RGM can possibly be utilized in high value-added processed meat products if its quantity and particle size are altered based on product characteristics.

Effect of Korean Red Ginseng extraction conditions on antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content: optimization using response surface methodology

  • Lee, Jin Woo;Mo, Eun Jin;Choi, Ji Eun;Jo, Yang Hee;Jang, Hari;Jeong, Ji Yeon;Jin, Qinghao;Chung, Hee Nam;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Background: Extraction conditions greatly affect composition, as well as biological activity. Therefore, optimization is essential for maximum efficacy. Methods: Korean Red Ginseng (KRG) was extracted under different conditions and antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content evaluated. Optimized extraction conditions were suggested using response surface methodology for maximum antioxidant activity and extraction yield. Results: Analysis of KRG extraction conditions using response surface methodology showed a good fit of experimental data as demonstrated by regression analysis. Among extraction factors, such as extraction solvent and extraction time and temperature, ethanol concentration greatly affected antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content. The optimal conditions for maximum antioxidant activity and extraction yield were an ethanol concentration of 48.8%, an extraction time 73.3 min, and an extraction temperature of $90^{\circ}C$. The antioxidant activity and extraction yield under optimal conditions were 43.7% and 23.2% of dried KRG, respectively. Conclusion: Ethanol concentration is an important extraction factor for KRG antioxidant activity and extraction yield. Optimized extraction conditions provide useful economic advantages in KRG development for functional products.

Korean Red Ginseng Extract Activates Non-NMDA Glutamate and GABAA Receptors on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

  • Yin, Hua;Park, Seon-Ah;Park, Soo-Joung;Han, Seong-Kyu
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.219-225
    • /
    • 2011
  • Korean red ginseng (KRG) is a valuable and important traditional medicine in East Asian countries and is currently used extensively for botanical products in the world. KRG has both stimulatory and inhibitory effects on the central nervous system (CNS) suggesting its complicated action mechanisms. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Some studies reported that KRG has antinociceptive effects, but there are few reports of the functional studies of KRG on the SG neurons of the Vc. In this study, a whole cell patch clamp study was performed to examine the action mechanism of a KRG extract on the SG neurons of the Vc from juvenile mice. KRG induced short-lived and repeatable inward currents on all the SG neurons tested in the high chloride pipette solution. The KRG-induced inward currents were concentration dependent and were maintained in the presence of tetrodotoxin, a voltage gated $Na^+$ channel blocker. The KRG-induced inward currents were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and/or picrotoxin, a gamma-aminobutyric acid $(GABA)_A$ receptor antagonist. However, the inward currents were not suppressed by d,l-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. These results show that KRG has excitatory effects on the SG neurons of the Vc via the activation of non-NMDA glutamate receptor as well as an inhibitory effect by activation of the $GABA_A$ receptor, indicating the KRG has both stimulatory and inhibitory effects on the CNS. In addition, KRG may be a potential target for modulating orofacial pain processing.

Lipid and Lipase Distribution on Endosperm Cell of Panax ginseng Seed for the Electron Microscope (전자현미경을 이용한 인삼종자 배유세포내의 지질 및 지질가수분해 효소의 분포)

  • 유성철;노미전
    • Journal of Ginseng Research
    • /
    • v.16 no.2
    • /
    • pp.129-137
    • /
    • 1992
  • This study was carried out to investigate the localization of lipids and lipase activity with lipid staining and cytochemical technique in endosperm cells of Panax ginseng C.A. Meyer seed. In endosperm cells of indehiscent seed, protein bodies facing the umbiliform layer are different in electron density during the various degraded processes. Gradually, protein matrix near the cell wall was lysed and electron lucent inclusions appeared on umbiliform layer. The protein body with high electron density and the spherosome with low electron density were observed in endosperm cells. As a result of lipid staining, electron density of spherosome is more intense than those of the protein matrix within the protein body in endosperm cells of indehiscent seed. Free spherical spherosomes within the umbiliform layer have a high electron density. The spherical spherosomes were more electron densed and were uniform in comparison with the cytoplasmic proteinaceous granules in endosperm cells of seed with red seed coat. The major component of spherosome was determined to be lipid. Lipase activity occurs in the spherosome and near the endosperm cell wall facing the umbiliform layer. Cytochemical reaction products of lipase were observed in the spherosome membrane and in the inner regions of spherosome. After protein bodies were digested, lipase activities were observed in free spherosomes and near the cell wall of endosperm cells. Umbiliform layer composing of fibrillized wall and digested materials of the endosperm cell showed a little lipase reaction products.

  • PDF

Total Sugar and Artificial Sweetener Contents of Health Functional Foods in Seoul (서울지역 유통 건강기능식품의 당 및 인공감미료 함량)

  • Cho, In-soon;Cho, Tae-hee;Lee, Jae-kyoo;Lee, Yun-jeoung;Kim, Si-jung;Choi, Hee-jin;Shin, Ki-young;Oh, Young-hee
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.314-320
    • /
    • 2017
  • This study was carried out to investigate and evaluate total sugar and artificial sweetener contents in health functional foods. In this study, HPLC with evaporative light scattering detector (ELSD) and HPLC-UV were used to determine the contents of total sugar and artificial sweetener in health functional foods. Sixty-six chewable products and sixty red ginseng products were collected from markets in Seoul. The average content of 126 samples per daily intake portion was 1.96 g ranging from not-detected (N.D.) to 12.61 g. The mean total sugar content per serving of chewable product was 1.26 g and N.D. to 10.39 g. The average amount of total sugar per daily intake of ginseng and red ginseng was 2.70 g and N.D. to 12.61 g. The average amount of sugar per daily intake of chewable products was 2.10 g for children, 1.43 g for nutrients, and 0.35 g for functional raw material. For children's products, the content of sugar per serving was ranged from 1.03 g to 5.33 g, from N.D. to 10.39 g for nutrients and from N.D. to 2.61 g for functional raw materials. The average content of sugar per daily intake of ginseng and red ginseng product was 4.25 g in liquid product, 1.51 g in concentrate product and 1.49 g in powder product. The contents of sugar per the daily intake of the liquid product ranged from N.D. to 10.80 g, from 0.01 g to 12.61 g for the concentrated product, and from 0.06 g to 5.64 g for the powdered product. Analysis of artificial sweeteners showed that artificial sweeteners were detected in three cases. No artificial sweeteners were detected in ginseng and red ginseng products. Two of the chewable products and one of the functional raw materials were detected. The detected artificial sweeteners were aspartame, 3.09 g/kg in nutrients and 1.09 g/kg in functional raw material.

Effect of Nepalese Pseudo Ginseng Components on Lipolytic Action of Toxohormone-L from Cancerous Ascites Fluid (Nepal산 Pseudo Ginseng 성분이 암독소 호르몬-난의 체지방 분해작용에 미치는 영향)

  • 이성동;오전척도
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.2
    • /
    • pp.109-114
    • /
    • 1993
  • This study was divised to observe an Inhibitory effect toward a lipolytic action of toxohormone-L from large root and small root Nepal pseudo ginseng (NPG ; Nepal products) components by water extract and ethanol precipitate in vitro. Toxohormone-L is known to be a lipolytic factor that was partially purified from the ascites fluid of Sarcoma 180-bearing mice and of patients with hepatoma. The inhibitory effect that inhibited the lipolytic action of toxohormone-L by ethanol Precipitate component of large root NPG (mean 55.5%) was higher (mean 1.37 times) than that of water extract component in final reaction concentration of 500 and 1, 000ug/ml, on the other side inhibitory effect of water extract component in small root NPG (mean 55.5%) was higer (mean 1.14 times) than that of ethanol precipitate component. In a way inhibitory effect of precipitate component In large root NPG(47.6%), when final reaction concentration of sample were 1, 000ug/ml, was about 40% lower than that of Korean red ginseng.

  • PDF

Effect of Extracting Conditions on the Soluble Solid's Yield of Korean Red Ginseng (추출 조건이 홍미삼(紅尾蔘)의 가용성 물질의 용출률에 미치는 영향)

  • Sung, Hyun-Soon;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.168-172
    • /
    • 1986
  • The swelling and hydration properties of Korean red ginseng tails and yield of total solids in extract were studied during extraction with ethanol solution having a concentration of 0-90% at $60-100^{\circ}C$. Extraction was carried out 5 times which was taken 8 hours per each time of extraction. The swelling, hydration and total solids yield were increased as the ethanol concentration decreased and as the extraction temperature raised. The cumulative value of solids yield suggested that three times of extractions with water or 70% ethanol were effective to recover more than 84%. Linear regression analysis on the properties investigated and extraction conditions showed a linear logarithmic relationship .

  • PDF

PHENOLOXIDASE AND ANTIOXIDANT IN KOREAN GINSENG (고려인삼에 있어서의 페놀 산화효소의 항산화물질)

  • Park E.Y.;Luh B.S.;Branen A.L.
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.257-275
    • /
    • 1984
  • Enzymatic browning is considered desirable in tea and tobacco processing but undesirable in many fruits processing at the present time. It is necessary to understand the nature of the enzyme, phenoloxidase, in order to control browning reactions, and extend its effects to formation of browning products as antioxidants in ginseng. Ginseng exhibits antioxidant activity when incorporated with turkey dark meat patties. The activity in red ginseng showed about two times stronger than white ginseng. One of the phenolic antioxidants from fresh, white and reprocessed white ginseng was identified as phenol 2.6 Bis(1.1 dimethyl ethyl) 4-methyl among several unknown compounds by GC/mass spectrometer. In red ginseng, no phenol 2.6 Bis (1.1 dimethyl ethyl) 4-methyl was detected, the compound may be polymerized by phenoloxidase and form some higher molecular compounds which may possess high antioxidant activity. Phenoloxidase isozymes in fresh Korean ginseng (panax ginseng C.A. Meyer) were extracted with phosphate buffer at pH 7.3. The isozymes were purified through ammonium sulfate fractionation, dialysis and chromatography on a DEAE-cellulose column. Two groups of phenoloxidase were shown to be present, one in the floating agglomerated group and the other in the precipitate. group from the 0.85 saturation ammonium sulfate. The DEAE-cellulose column chromatography, the phenoloxidase isozyme present in the precipitate appears as the first peak (I), and that in the agglomerate in the second peak (II). Isozyme I showed higher activity with catechin and catechal, and isozyme II showed higher activity with p-cresol. The isozyme showed two optimum pH activity one at pH 4.5 and the other at 8.5 with catechin as substrate. Korean ginseng phenoloxidase has high heat stability. When heated at $75^{\circ}C$ for 2 hours, its activity remained $90\%\;and\;80\%$ on phenoloxidase I and II respectively. Phenoloxidase I was most active on (+) catechin followed by p-cresal, catechol and epicatechin. Phenoloxidase II was most active on p-cresal followed by (+) catechin, catechol, p-coumanic acid and epicatechin. Sodium bisulfite, sodium cyanide, ascorbic acid glutachion in the oxidized form, sodium diethyl dithiocarbomate and ethylendiamine tetra acetate (EDTA) acted as inhibitors. Red ginseng color development was initiated by phenoloxidase and finished by a followed sun drying process. The antiaging activity of ginseng may be initiated by the antioxidant in the ginseng.

  • PDF

Relationship of Saponin and Non-saponin for the Quality of Ginseng (인삼의 품질과 약리활성 물질과의 상관성)

  • Nam, Gi-Yeol;Go, Seong-Ryong;Choe, Gang-Ju
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.274-283
    • /
    • 1998
  • It has generally been accepted that quality of ginseng should be determined not by the content of a single component but by composition and balance of total active principles. However, there still can be an exception with a product in which a given ginsenoside is used for the treatment of a specific disease. Although ginsenosides have been regarded to be major active components of ginseng and employed as index components for the quality control, it does not consistent with the traditional concept on ginseng quality creterion; main root has been more highly appreciated than the lateral or fine root. Content of ginsenosides in the lateral or fine root is much higher than that in main root. However, the ratio of protopanaxadiol (PD) and protopanaxatriol (PT) saponins existing in various part of ginseng root is greatly different. The ratio of PD/PT saponins in main root is well balanced but the thinner the root is the higher the ratio. Thus far, a total of 34 different kinds of ginsenosides have been isolated from Korean (red) ginseng, and their pharmacological activities were elucidated partly. Interestingly, different ginsenoside shows similar or contrary effects to each other in biological systems, thus indicating the significance of absolute content of single ginsenoside as well as compositional patterns of each ginsenoside. Therefore, pharmacological activities of ginseng should be determined as a wholly concept. In these regards, standardization of ginseng material (fresh ginseng root) should be preceded to the standardization of ginseng products because ginsenoside content and non-saponin active principles such as polysaccharides and nitrogen (N)-containing compound including proteins are significantly different from part to part of the root. In other words, the main root contains less ginsenosides than other lateral or fine roots. Contents of polysaccharides and N-containing compound in main root is higher. However, the quality control of ginseng products focused on non-saponin compounds has limitation in applying to the analytical method, because of the difficult chemical analysis of these compounds. Content of ginsenosides, and ratios of PD/PT and ginsenoside Rb,/Rg, are inversely proportional to the diameter of ginseng root. Therefore, these can be served as the chemical parameters for the indirect method of evaluating from what part of the root does the material originate. Furthermore, contents of polysaccharides and N-containing compounds show inverse relationship to saponin content. Therefore, it seems that index for analytical chemistry of saponin can be applied to the indirect method of evaluating not only saponin but also non-saponin compounds of ginseng. From these viewpoints, it is strongly recommended that quality of ginseng or ginseng products be judged not only by the absolute content of given ginsenoside but also by varieties and compositional balance of ginsenosides, including contents of non-saponin active principles.

  • PDF

Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: A systematic review and meta-analysis

  • Park, Soo Hyun;Chung, Sangwon;Chung, Min-Yu;Choi, Hyo-Kyoung;Hwang, Jin-Taek;Park, Jae Ho
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.188-205
    • /
    • 2022
  • Panax ginseng is a medicinal plant is a material with various pharmacological activities and research suggests that it is particularly effective in representative metabolic diseases such as hyperglycemia, hypertension, and hyperlipidemia. Therefore, in this study, systematic review and meta-analysis were performed to investigate the comprehensive effect of P. ginseng on metabolic parameters representing these metabolic diseases. A total of 23 papers were collected for inclusion in the study, from which 27 datasets were collected. The investigational products included P. ginseng and Korean Red ginseng. Across the included studies, the dose ranged from 200 mg to 8 g and the supplementation period lasted from four to 24 weeks. The study subjects varied from healthy adults to those with diabetes, hypertension, obesity, and/or hyperlipidemia. As a result of the analysis, the levels of glucose and insulin area under the curves, % body fat, systolic and diastolic blood pressures, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were significantly reduced in the P. ginseng group as compared with in the placebo group. In conclusion, P. ginseng supplementation may act as an adjuvant to prevent the development of metabolic diseases by improving markers related to blood glucose, blood pressure, and blood lipids.