• Title/Summary/Keyword: recycling technology

Search Result 1,805, Processing Time 0.027 seconds

The Psychological Relaxation Effects of College Students in Location Targeting Seonyudo Park in Autumn (가을철 선유도공원의 주제공간이 대학생들의 심리적 안정에 미치는 영향)

  • Yoon, Yong-Han;Oh, Deuk-Kyun;Kim, Jeong-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.2
    • /
    • pp.13-22
    • /
    • 2015
  • The study discovers mood state and enhancement effect of users by scenery of location targeting Seonyudo Park; where is widely recognized as the representative recycling environmental park as well as theme experience space and scenery admiration in Korea. Also, the influence level of park and thematic space upon wellness was researched for future park design and its base data. As a result of semantic differential(SD), the most items showed low point in positive way when people admiring the scenery in Seonyudo. Also, a subject experienced differently depending on each inside scenery element of the park. As a result of profile of mood states(POMS), a tension and anxiety points were shown in order of Urban (7.78) > Water Purification Basin(3.33) > Gardens of Water Plants(2.11) > Garden of Green Pillar(2.00) > Garden of Time (0.89). The depression points were shown in order of Urban(4.94) > Water Purification Basin(3.50) > Garden of Green Pillar(2.94) > Garden of Time(1.61) > Gardens of Water Plants(1.38). The anger and hostility points were shown in order of Urban(4.22) > Water Purification Basin(3.33) > Garden of Green Pillar(2.22) > Garden of Time(1.39) > Gardens of Water Plants(1.11). The fatigue points were shown in order of Urban(6.5) > Water Purification Basin(3.39) > Garden of Green Pillar(2.78) > Garden of Time(2.28) > Gardens of Water Plants (2.06). The vigor points were shown in order of Gardens of Water Plants(11.39) > Garden of Time(11.00) > Garden of Green Pillar(8.39) > Water Purification Basin(7.77) > Urban(5.28). Also, as a result of statistics analysis, difference value of scenery type is significant. The result of total emotional disturbance(TED) was analyzed in order of Urban(24.5) > Water Purification Basin(9.5) > Garden of Green Pillar(4.67) > Garden of Time(-1.39) > Gardens of Water Plants(-1.22).

Initial Analysis of the Underground Air Among Jeju Lava Forest(Sumgol) and its Healing Effect on the Human Body (제주 현무암 '숲' 지하 공기(숨골: Sumgol)의 분석과 인체에 미치는 치유 효과)

  • Sin, SBangsik;Kim, Hyek Nyeon;Lee, Deok Hee;Kim, Tae Seung;Kim, Yong Hwan;Kang, Chang Hee;Song, Kyu Jin;Lee, Hyung H.
    • Journal of Naturopathy
    • /
    • v.11 no.1
    • /
    • pp.18-30
    • /
    • 2022
  • Background: It was to develop an air purification system (APS) using an underground air purification layer to verify the effect of basalt forest's underground air (sumgol) on a volcanic Jeju. Finally, it is necessary to analyze these purified air components and their usefulness to the human body in an air experience center. Purpose: It was to collect basalt forest air, analyze its composition, and explore its effect on the human body. Methods: We APS devices installed at four points in the Papaville area of Jeju. The air discharged from the APS was collected and analyzed the recycling components. An installed experience room filled with negative ions is about 5,000 ions/m3. After allowing the participants to stay for 60 to 120 minutes, we investigated the state of blood vessels. Results: In the analysis of the underground air, the O2 concentration was 21.18%, which was higher than the average oxygen concentration of 20.94% in the atmosphere. However, Formaldehyde was not detected, and the CO2 was 419 ppm, which was lower than that of indoor air. The PM2.5 concentration was less than 24 ㎍/m3 and detected anions over 5.000 /m3. The experiencer's vascular states improved, and the increase in pulse rate and stress relief were high. Conclusions: The valuable ingredients identified by analyzing the air were precious for natural healing. The experience results showed that it effectively improved the pulse rate, blood vessels, and stress. These conditions may be highly beneficial as a new area for expanding the basalt lava forest in the Jeju area into the natural healing and wellness industry.

Nutrient Balance during Rice Cultivation in Sandy Soil affected by the Fertilizer Management (사질논에서 벼 재배기간 중 시비방법별 양분수지)

  • Roh, Kee-An;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.155-163
    • /
    • 1999
  • Nutrient balance during rice cultivation in the paddy of a local area under the environmental protection for drinking water supply was investigated. To compare nutrient balance in the paddy soil applied with different types of fertilization, 7 treatments were selected as followings : Recommended level of chemical fertilizers(R), Conventional fertilization(CF), Fresh cow manure(FCM), Cow manure compost(CMC), Straw compost+reduced chemical fertilizer(SCF), Fresh straw+recommended level of fertilizers(FSC), and no fertilization as control(C). Here, FCM, CMC and SCF were applied at the same level of total nitrogen as recommended in R. Rice yield was the highest in the recommendation(R) and fresh cow manure (FCM) treatments with $6,730kg\;ha^{-1}$(index 100), and followed by SCF (index 98), FSC (index 98), CMC(index 94), and CF(index 94). But statistically significant difference was not recognized among treatments except the control. Nitrogen infiltration loss was high in the simple chemical fertilizer treatments with $63kg\;ha^{-1}$ in CF and $58kg\;ha^{-1}$ in R during rice cultivation, respectively. Nitrogen infiltration loss was decreased below half level of chemical fertilizer treatments with cow manure treatments ($23kg\;ha^{-1}$ in FCM and $27kg\;ha^{-1}$ in CMC) and with reducing chemical fertilizer treatment by adding straw compost ($25kg\;ha^{-1}$). Phosphate was not leached during rice cultivation in paddy soil of a fluvial deposit type, in which oxidation horizon was developed broadly under around 15 cm depth of surface soil. Phosphate balance (A-B) was closed to 0 in all treatments except cow manure treatment (CMC), in which it was $+30kg\;ha^{-1}$ and show the possibility of over accumulation of phosphate by continuously replicated application of cow manure compost. Potassium balance was negative value in all but straw recycling treatment (FSC). It means that potassium was continuously supplied from soil minerals, uptaken by plants or eluted out of soil. In conclusion, by substituting inorganic fertilizer for organic fertilizer or reducing application rate of chemical fertilizer through mixing organic fertilizer, it would be possible to achieve the same rice yield as in the recommendation treatment and to decrease nutrient leaching below half level in rice paddy soil.

  • PDF

Environmental Impact Assessment of Rapeseed Cultivation by Life Cycle Assessment (전과정평가를 이용한 유채재배의 환경영향 평가)

  • Hong, Seung-Gil;Nam, Jae-Jak;Shin, Joung-Du;Ok, Yong-Sik;Choi, Bong-Su;Yang, Jae-E.;Kim, Jeong-Gyu;Lee, Sung-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • BACKGROUND: High input to the arable land is contributed to increasing productivity with causing the global environmental problems at the same time. Rapeseed cultivation has been forced to reassess its positive point for utilization of winter fallow field. The Objective of this study was performed to assess the environmental impact of rapeseed cultivation with double-cropping system in paddy rice on Yeonggwang district using life cycle assessment technique. METHODS AND RESULTS: For assessing each stage of rapeseed cultivation, it was collected raw data for input materials as fertilizer and pesticide and energy consumption rate by analyzing the type of agricultural machinery and working hours by 1 ton rapeseed as functional unit. Environmental impacts were evaluated by using Eco-indicator 95 method for 8 impact categories. It was estimated that 216 kg $CO_2$-eq. for greenhouse gas, 3.98E-05 kg CFC-11-eq. for ozone lazer depletion, 1.78 kg SO2-eq. for acidification, 0.28 kg $PO_4$-eq. for eutrophication, 5.23E-03 kg Pb-eq. for heavy metals, 2.51E-05 kg B(a)p-eq. for carcinogens, 1.24 kg SPM-eq. for smog and 6,460 MJ LHV for energy resource are potentially emitted to produce 1 ton rapeseed during its whole cultivation period, respectively. It was considered that 90% of these potential came from chemical fertilizer. For the sensitivity analysis, by increasing the productivity of rapeseed by 1 ton per ha, potential environmental loading was reduced at 22%. CONCLUSION(s): Fertilization affected most dominantly to the environmental burden, originated from the preuse stage, i.e. fertilizer manufacturing and transporting. It should be included and assessed an indirect emission, which is not directly emitted from agricultural activities. Recycling resource in agriculture with reducing chemical fertilizer and breeding the high productive variety might be contribute to reduce the environmental loading for the rapeseed cultivation.

Thermal Conductivity and Pore Characteristics of Low-Temperature Sintered Lightweight Aggregates Mode from Waste Glass and Bottom Ash (바텀애쉬와 폐유리를 사용하여 제조한 저온소성 경량골재의 열전도율과 기공특성)

  • Lee, Han-Baek;Ji, Suk-Won;Seo, Chee-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.851-858
    • /
    • 2010
  • In this study, waste glass and bottom ash were used as basic materials in order to secure a recycling technology of by-products which was mostly discarded and reclaimed. In addition, because softening point of waste glass is less than $700^{\circ}C$ and bottom ash includes combustible material, it was possible to manufacture low-temperature sintering lightweight aggregates for energy saving at $800{\sim}900^{\circ}C$ that it is as much as 20~30% lower than sintering temperature of existing lightweight aggregates. Thermal conductivity of newly-developed lightweight aggregates was 0.056~0.105W/m. K and its porosity was 40.36~84.89%. A coefficient of correlation between thermal conductivity and porosity was -0.97, it showed very high negative correlationship. With this, we were able to verify that porosity is key factor to affect thermal conductivity. Microstructure of lightweight aggregates by $CaCO_3$ content and replacement ratio of bottom ash in the variation of temperature were that $CaCO_3$ content increased along with pore size while replacement ratio of bottom ash increased as pore size decreased. Specially, most pores were open pore instead of closed pore of globular shape when replacement ratio of bottom ash was 30%, and pore size was small about 1/10~1/5 as compared with case in bottom ash 0~20%. In addition, open pore shapes were remarkably more irregular form of open pore in $900^{\circ}C$ than $700^{\circ}C$ or $800^{\circ}C$ when replacement ratio of bottom ash was 30%. We reasoned hereby that these results will influence on absorption increase, strength and thermal conductivity decrease of lightweight aggregates.

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.

Review Study on Integrated Carbon Cycle System for the Dairy Cattle Production (젖소 사육에서 탄소 순환 체계에 관한 고찰 연구)

  • Kim, Ki-Youn;Ko, Han-Jong;Kim, Chi-Ho;Choi, Eun-Gyu;Kim, Joung-Ku;Ryou, Young-Sun;Kim, Hyeon-Tae
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • The first objective of this study is to estimate emission coefficient of organic carbon regarding its inflow and discharge for dairy farm through reviewing domestic and foreign literature published or reported previously. Its second objective is to provide fundamental data to establish carbon cycle system related to livestock production. Based on literature review, emission coefficients by inflow of organic carbon into dairy farm were 5.9 ton C/head/year for feedstuff ingestion by milk cow, 2.3 ton C/head/year for recycling manure compost of milk cow to grassland, 318 g C/$m^2$/year for contents in grassland, 145 g C/$m^2$/year for contents in fodder crop, and 17 g C/$m^2$/year for $CO_2$ uptake by fodder crop, respectively. on the other hand, emission coefficients by discharge of organic carbon from dairy farm were 2,9 ton C/head/year for emission of $CO_2$ and $CH_4$ by respiration and burp of milk cow, 0.4 ton C/head/year for emission of $CO_2$ and $CH_4$ by decomposition of organic carbon in manure of milk cow, 440 g C/$m^2$/year for emission of $CO_2$ from grassland, and 0 for elution of organic carbon in grassland into underground water, respectively.

Control of Mg and P Ion Concentration as a Precondition to Use N, K and Ca Ion Sensors in Closed Hydroponics (N, K, Ca의 한정된 이온센서 이용을 전제로 한 순환식 수경재배에서 P, Mg의 조절 방법)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Rhee, Han Cheol;Lee, Seong Chan;Lee, Jung-Sup;Kang, Nam Jun;Kim, Hak Jin;Jung, Dae Hyun
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.871-877
    • /
    • 2016
  • Recycling nutrient solutions in closed hydroponic production systems is usually accompanied by an imbalance of nutrient solutions when concentration is controlled according to electrical conductivity (EC) levels. This study investigated whether it was possible to automatically control the concentrations of five essential elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) using only N, K and Ca ion sensors. N, P, K, Ca, and Mg uptake was measured in the nutrient solution, and relationships between absorbed ions were analyzed through twice-repeated experiments in lettuce. Results confirmed that the pattern of $PO_4$ ion uptake was similar that of N, and the pattern of Mg ion uptake was similar that of Ca. $PO_4$ ion uptake was most highly correlated with N, and Mg was most highly correlated with Ca. Regression coefficients of N and $PO_4$ were significantly different at 1.04 and 0.55, respectively, but were similar between Ca and Mg at 0.35 and 0.40, respectively. Additional experiments were conducted to measure nutrient uptake in pak choi and rose plants, both to confirm the results from the first experiment in lettuce, and to assess possible application to other crops. Coefficients of determination both for N and $PO_4$, and Ca and Mg were considerably high ($R^2=0.86$) in cultured pak choi, and similar results were observed in cultured rose ($R^2=0.87$ and 0.73, respectively). Regression coefficients for cultured pak choi were 0.56 and 0.24, respectively, and for rose were 0.51 and 0.16, respectively. Although the results obtained for N and $PO_4$ were not consistent between the lettuce experiments, N and $PO_4$ have similar regression coefficients for all crops. No common coefficient was found between Ca and Mg.

A Study on Comparative Analysis of Socio-economic Impact Assessment Methods on Climate Change and Necessity of Application for Water Management (기후변화 대응을 위한 발전소 온배수 활용 양식업 경제성 분석)

  • Lee, Sangsin;Kim, Shang Moon;Um, Gi Jeung
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • In order to resolve the problem of change in global climate which is worsening as days go by and to preemptively cope with strengthened restriction on carbon emission, the government enacted 'Framework Act on Low Carbon Green Growth' in 2010 and selected green technology and green industry as new national growth engines. For this reason, the necessity to use the un-utilized waste heat across the whole industrial system has become an issue, and studies on and applications of recycling in the agricultural and fishery fields such as cultivation of tropical crops and flatfishes by utilizing the waste heat and thermal effluent generated by large industrial complexes including power plants are being actively carried out. In this study, we looked into the domestic and overseas examples of having utilized waste heat abandoned in the form of power plant thermal effluent, and carried out economic efficiency evaluation of sturgeon aquaculture utilizing thermal effluent of Yeongwol LNG Combined Cycle Power Plant in Gangwon-do. In this analysis, we analyzed the economic efficiency of a model business plan divided into three steps, starting from a small scale in order to minimize the investment risk and financial burden, which is then gradually expanded. The business operation period was assumed to be 10 years (2012~2021), and the NVP (Net Present Value) and economic efficiency (B/C) for the operation period (10 years) were estimated for different loan size by dividing the size of external loan by stage into 80% and 40% based on the basic statistics secured through a site survey. Through the result of analysis, we can see that reducing the size of the external loan is an important factor in securing greater economic efficiency as, while the B/C is 1.79 in the case the external loan is 80% of the total investment, it is presumed to be improved to 1.81 when the loan is 40%. As the findings of this study showed that the economic efficiency of sturgeon aquaculture utilizing thermal effluent of power plant can be secured, it is presumed that regional development project items with high added value can be derived though this, and, in addition, this study will greatly contribute to reinforcement of the capability of local governments to cope with climate change.

  • PDF

Sensitivity of NOx Removal on Recycled TiO2 in Cement Mortar (재생 이산화티탄을 혼입한 모르타르의 NOx 저감률 민감도 분석)

  • Rhee, Inkyu;Kim, Jin-Hee;Kim, Jong-Ho;Roh, Young-Sook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.388-395
    • /
    • 2016
  • This paper explores the photocatalytic sensitivity of cement mortar incorporated with recycled $TiO_2$ from waste water sludge. Basically, $TiO_2$ cluster sank down slowly to the bottom of cement mortar specimen before setting and hardening process. This leads the mismatch of $TiO_2$ concentration on the top and the bottom faces of a specimen. This poorly dispersed $TiO_2$-cement mortar naturally exhibits poor NOx removal efficiency especially on the top of cementitious structure. In architectural engineering application such as building or housing structures, one can simply filp over from the bottom so that more $TiO_2$ concentrated surface can be placed outward into the air. However, in highway pavement case, this could not be applicable due to in-situ installation of concrete pavement. Hence, the dispersion of $TiO_2$ cluster inside the cementitous material is getting important issue onto road construction application. To elaborate this issue, according to our results, silica fume, high-ranged water reducer, viscosity agent, blast furnace slag were not enhanced much of dispersion characteristics of $TiO_2$ cluster. The combination of foaming agent and accelerator of hardening with viscosity agent and small grain size of fine aggregate may help the dispersion of $TiO_2$ inside cementitious materials. Even though the enhanced dispersion were applied to the specimen, NOx removal efficiency doest not change much for the top surface of the specimen. This concurrently affected by the presence of tiny air voids and the dispersion of $TiO_2$ in that these voids could easily adsorbed NOx gas with the aid of large surface area.