• Title/Summary/Keyword: recycling paper

Search Result 870, Processing Time 0.03 seconds

Levels of Persistent Organic Pollutants in Waste Paper and Waste Lumber and Evaluation of their Sources (폐지와 폐목재에서의 잔류성 유기오염물질의 농도 및 배출원 추정)

  • Hwang, In-Kyu;Lee, In-Seok;Oh, Kwang-Joong;Kim, Ji-Won;Park, Hung-Suck;Oh, Jeong-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.870-878
    • /
    • 2010
  • We investigated the concentration and the sources of ubiquitous persistent organic pollutants [i.e., 17 toxic polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), 12 coplanar polychlorinated biphenyls (Co-PCBs), and 16 priority polycyclic aromatic hydrocarbons (PAHs)] in waste papers and lumbers from industrial complexes. The total concentrations in waste papers and lumbers ranged from 9.69~176.77 pg/g-dry and 0.14~0.25 pg/g-dry for 17 PCDD/Fs, 109.95~4097.25 pg/g-dry and 28.23~59.88 pg/g-dry for 12 Co-PCBs and 9.30~52.18 ng/g-dry and 0.82~1.82 ng/g-dry for 16 PAHs respectively. Generally, the concentration of these pollutants in waste papers was higher than those in waste lumbers. OCDD was dominant in waste papers and lumbers and the PCDD/F patterns of these samples were similar with that of stack gas. The distribution patterns of Co-PCBs in wastes were related with commercial PCB products, indicating the effect of commercial PCB products on ubiquitous environment. The diagnostic ratios of several PAH compounds in waste paper showed that they were related with pyrogenic sources.

Membrane Fouling Control Effect of Periodic Water-back-flushing in the Tubular Carbon Ceramic Ultrafiltration System for Recycling Paper Wastewater (제지폐수 재활용을 위한 관형 탄소계 세라믹 한외여과장치에서 물 역세척의 막오염 제어 효과)

  • 김미희;박진용
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.190-203
    • /
    • 2001
  • In this study the discharged wastewater from a paper plant was filtrated by 4 kinds of tubular carbon ceramic ultrafiltration membranes with periodic water-back-flushing. We could investigate effects of watch-back-flushing period, transmembrane pressure (TMP) and flow rate, and find optimal operating conditions. The back-f1ushing time (BT) was fixed at 3 sec, and fi1tration times (FT) werc changed in 15~60 scc, TMP in 1.00~2.50$kg_{f}$/$cm^2$, and the flow rates in 0.27~1.75 L/min. The optimal conditions were discussed in 7he viewpoints of dimensionless permeate flux (J/J$_{0}$), total permeate volume ($V^T$) and resistance of membrane fouling ($R^f$). Optima1 back-flushing period was BT/FT=0.20, suggesting that the frequent back-flushing should decrease membrane fouling. Optimal TMP in the viewpoint of $V^T$ was 1.00~1.55$kg_{f}$/$cm^2$, suggesting that rising TMP should increase membrane fouling and decrease permeate flux. But, rising f1ow rate should decrease membrane fouling and increase permeate flux. Then, average rejection rates of pollutants filtratedby carbon ceramic membranes were 88~98 % for turbidity, 48~72% fort $COD_{cr}$ and 37~76% for TDS.

  • PDF

Pyrolysis Characteristics of CCL(Copper Clad Laminate) Based Paper/Phenolic Resin Composites (종이/페놀수지가 주성분인 동박적층판(Copper Clad Laminate)의 열분해 특성)

  • Song, Jae-Hun;Kim, Seung-Do;Ahn, Hyun-Cheol;Kim, Gyung-Soo;Kim, Sang-Bum;Jung, Jae-Sung;Gong, Sung-Ho;Cho, Young-Gae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1013-1019
    • /
    • 2007
  • Electronic wastes have increased tremendously. However, any reliable treatment methodologies have rarely been established. Electronic wastes have posed serious disposal problem due to their physico-chemical stability. This paper investigated the application possibility of pyrolysis for the purpose of recycling the p-CCL(phenol based Copper Clad Laminate). Thermogravimetric analysis(TGA) was used to investigate the thermal decomposition pattern of p-CCL. We elucidated the characteristics of pyrolysis by-products at operating temperatures of 280, 350 and $600^{\circ}C$. GC/MS and FT-IR were used to characterize the liquid by-products along with general characterization methods such as Ultimate Analysis, Proximate Analysis and Heating Value, whereas general characterization methods were only introduced for the solid by-products. At a heating rate of $5^{\circ}C$/min, TGA curves exhibited three decomposition stages: (1) low-temperature decomposition region$(<280^{\circ}C)$, (2) medium temperature region$(280\sim350^{\circ}C)$ and (3) high-temperature region$(>350^{\circ}C)$. The major compounds of liquid by-products at low- and medium-temperatures were accounted for by water and phenol, whereas branched phenols and furans were major compounds at high-temperatures. As the temperature increases, volatile quantities decreased but the fixed carbon increased. High heating values of solid by-products($7,400\sim7,600$ kcal/kg) would suggest that the solid by-products could be applicable as fuel. In addition, high fixed carbon but low ash content of the solid by-products offered an implication that they are capable of being upgradable for adsorbent after applying appropriate activating process.

Larch Pellets Fabricated with Coffee Waste and the Commercializing Potential of the Pellets (커피박과 낙엽송 목분을 이용한 펠릿 제조 및 이에 대한 상용화 검토)

  • Yang, In;Han, Gyu Seong;Oh, Seung Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.48-59
    • /
    • 2018
  • This study was conducted to suggest the effective management and recycling processes of coffee waste, which can be easily obtained from coffee shops and coffee-related products industries. Prior to the fabrication of pellets, the potential of coffee waste as a raw material of pellet was investigated through the examination of its chemical compositions and fuel characteristics. Major gradient included in coffee waste was holocellulose, followed by fat/oil and protein. Coffee waste contained a small quantity of ash (0.7%), such as calcium, sodium, potassium and magnesium. Interestingly, coffee waste was easily dried probably due to its porous structure. Pellets fabricated with coffee waste and larch sawdust showed good fuel characteristics, such as moisture content, ash content, density and durability. The pellets exceed greatly the minimum requirements of $1^{st}$-grade wood pellet standard designated by National Institute of Forest Science (NIFOS). Particularly, the high calorific value of coffee waste showed the potential as a raw material of pellet. However, owing to high nitrogen and sulfur contents, coffee waste is like to be used as a raw material of wood pellet for combined heat and power plants equipped with a reduction system of $NO_x$ and $SO_x$ gases. On the other hand, 91 wt% larch sawdust and 9 wt% coffee waste are required to fabricate the $1^{st}$-grade wood pellets designated by NIFOS. Pellets fabricated with the conditions are estimated to have nitrogen content of 0.298% and sulfur content of 0.03%. Lastly, if amounts of coffee waste and sawdust in the production of wood pellets are adequately adjusted according to its purchasing price, the manufacturing cost of pellet can effectively be reduced. In addition, it is expected tp prepare the effective recycling process of waste and to relieve the environmental burden with the reduction of waste from the commercialization of coffee waste/larch pellets.

A Study on Feasibility and Applicability of Pneumatic Waste Collection System (쓰레기 수송관로 방식의 적용사례 및 실용에 관한 연구)

  • 민병균;이재영;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.109-117
    • /
    • 1997
  • The dust chute was a part of equipment in apartment which have been settled down as new residential style in this country since 1960s. However, the dust chute was destructed by results of social discussion, and it ended up old remains which cannot be found in new towns. Nowadays, chute was substituted a collecting system from extra collecting sites which were prepared near residential area. This phenomenon was caused by the poor separating collection. Since the early part of 1995, the whole vocal operating the volume-base charge system has been placed as the institution capable of recycling and separating collection of residential wastes in this country. People pursue the residential quality which is suitable to the Greenround period. Such a diverse effort corresponding to the social change can be also accomplished in the field of waste collecting transportation. In this paper, the local heating system and waste combustion site and hollow are already applied to the new residential area in the form of housing development. After investigating of the waste collecting transportation method in other countries related to such facilities, this paper represents the feasibility and applicability of pneumatic waste collection system which is used practically in the new housing complex and large facilities in other countries.

  • PDF

A Study of Expectation Effective Analysis According to Improvement in Quality of the Paper Packaging Material and Structure -Focusing on EPR Items- (종이팩의 재질구조 개선에 따른 기대효과 분석에 관한 연구 -EPR 대상 품목을 중심으로-)

  • Ko, Euisuk;Song, Kihyeon;Cho, Suhyun;Shim, Woncheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • As the foods and household manufacturing technology is developed, the packaging method of products is being changed from single to multi materials and layers. This study were focused on EPR carton packaging, economic and environmental expected effects were predicted by the improvements of packaging materials and structures to reduce effective packaging waste. Especially expected effects were predicted when improving the structure and material of aluminum laminated material was difficult to recycle. Thus, it was assumed the aseptic carton packaging laminated aluminum were replaced with silica laminated films. In conclusion, analysis of economic expected effects were undervalued in this study because of the limitation of assumptions, though this study has significance about a new approach by calculating the data different from the past that the conventional methods like predictive value of government's guidelines or goals.

Size Distribution and Physicochemical Characteristics of MSW for Design of Its Mechanical Biological Treatment Process (폐기물전처리(MBT)시설 설계를 위한 생활폐기물의 입도분포 및 물리화학적 특성에 관한 연구)

  • Park, Jin-Kyu;Song, Sang-Hoon;Jeong, Sae-Rom;Jung, Min-Soo;Lee, Nam-Hoon;Lee, Byoung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • There has been a recent trend in Korea that treatments for combustible wastes among municipal solid waste (MSW) by those methods, such as incineration and landfill are restricted as much as possible and Mechanical Biological Treatment (MBT) are encouraged actively in order to promote resource recovery. To build and operate properly these facilities, the physicochemical characteristics of MSW should be analyzed precisely beforehand. In particular, designing a crusher or separator properly which is the main process in MBT facilities of MSW. require the information on the size distribution characteristics of MSW, but they are nor sufficient in the qualities and quantities yet as of now. Accordingly, this study aims to evaluate size distribution characteristics of MSW and its physicochemical characteristics by size. The samples of MSW were collected from detached dwelling area, apartment area, business area, and commercial area of A city in Korea. According to the result of analysis, paper records 29.78~60.02% by wet weight basis, so it was the most regardless of the regions where the wastes were generated. And in terms of element analysis, Carbon(C) was 34.77~44.39%, the largest friction, and Oxygen(O) was the next occupying 19.46~33.71%. As indices of RDFs, Chlorine(Cl) was 0.39~0.83%, so it was less than the standard, 2.0%(by dry weight basis); moreover, Sulfur(S) did not exceed the standard, 0.6%, either. In the size distribution of MSW, waste fraction ranging 50~80mm in diameter was the most in combustible waste while 30~50mm was in incombustible waste.

  • PDF

Establishment of Waste Collection and Transportation System for Composting I. Estimation of Unit Garbage Generation (퇴비화촉진을 위한 쓰레기 수거체계의 확립 I. 음식물찌꺼기 원단위 발생량의 산정)

  • Shin, H.S.;Hwang, E.J.;Kang, H.;Lee, S.J.;Jang, W.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.25-36
    • /
    • 1995
  • It is important to separate the compostables from waste for successful operation of composting plant, since various compositions are mixed in it. For the separation of compostables, it is necessary to estimate total amounts of compostables from several sources. Based on it, required capacity and number of composting plant as well as proper waste collection and transportation system can be determined. So, amounts of garbage, major target material for composting. were estimated in this study. In survey of unit garbage generation(UGG). different estimation results would be obtained depending on the basis of its measurement. However, previous researches did not consider it. In this paper, the correlations between area and the number of user of garbage source were analyzed to find the related equations which were apllyed to estimation of total generation. Obtained results are as the following. Relative variations of measured UGG based on area and custumer are 62.5 and 52.8, respectively. In linear regression, related equation between area and custumer was Y=0.244X+59.0 (X=area, Y=custumer). The correlation factor r is 0.904. Equation Y=616.5X/(X+1215.4) was also obtained from linear regression using Monod equation (r=0.720). From the first order equation and measured data of UGG based on custumer, amounts of garbage generation from restaurant in Seoul and the whole country were calculated to 2043.9 ton/d and 9014.0 ton/d, respectively. But, the values calculated from measured data of UGG based on area were as low as 821.3 ton/d Cin Seoul) and 3821.0 ton/d(in the whole country). Consequently, the measurement of unit garbage generation based on the number of custumer was more favorable to lessen the points of survey and to guarantee the representative values. Especially, it would fit well on restaurant having statistics of area.

  • PDF

Methane Fermentation of Facultative Pond in Pond System for Ecological Treatment and Recycling of Livestock Wastewater (축산폐수 처리 및 재활용을 위한 조건성연못의 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • A wastewater treatment pond system was developed for treatment and recycling of dairy cattle excreta of $5\;m^1$ per day. The wastes were diluted by the water used for clearing stalls. The system was composed of three ponds in series. A submerged gas collector for the recovery of methane was installed at the bottom of secondary pond with water depth of 2.4m. This paper deals mainly with performance of methane fermentation of secondary pond which is faclutative one. The average $BOD_5$, SS, TN, and TP concentrations of influent into secondary pond were 49.1, 53.4, 48.6, and 5.3 mg/l, and those of effluent from it were 27.9, 45.7, 30.8, 3.2 mg/l respectively. Methane fermentation of 2.4-meter-deep secondary pond bottom was well established at $16^{\circ}C$ and gas garnered from the collector at that temperature was 80% methane. Literature on methane fermentation of wastewater treatment ponds shows that methane bacteria grow well around $24^{\circ}C$, the rate of daily accumulation and decomposition of sludge is approximately equal at $19^{\circ}C$, and activities of methanogenic bacteria are ceased below $14^{\circ}C$. The good methane fermentation of the pond bottom around $16^{\circ}C$, about $3^{\circ}C$ lower than $19^{\circ}C$, results from temperature stability, anaerobic condition, and neutral pH of the bottom sludge layer. It is recommended that the depth of pond water could be 2.4m. Gas from the collector during active methane fermentation was almost 83% methane, less than 17% nitrogen. Carbon dioxide was less than 1% of the gas, which indicates that carbon dioxide produced in bottom sludges was dissolved in the overlaying water column. Thus a purified methane can be collected and used as energy source. Sludge accumulation on the pond bottom for a nine month period was 1.3cm and annual sludge depth can be estimated to be 1.7cm. Design of additional pond depth of 0.3m can lead to 15 - 20 year sludge removal.

  • PDF

Changes of Physico-chemical Properties and Maturity Assessment during Composting of Turfgrass Clipping Types from the Golf Courses (골프장 잔디예초물 종류에 따른 퇴비화 과정 중 이화학성 변화와 부숙도 평가)

  • Ha, Seung Myung;Chang, Ki Woon;Han, Ki Pil;Hong, Joo Hwah;Lee, Jong Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.89-99
    • /
    • 2005
  • The golf courses more than about 200 are operating in Korea. From the golf courses, a great amount of turfgrass clippings tend to increase, steadily. Materials used in the experiment were Creeping Bentgrass(CB), Kentucky Bluegrass(KB), Korean Lawngrass(KL), rice bran and composted chicken drop. Treatments are CB, KB, and KL. The temperature during the composting of all treatments increased rapidly and reached at the highest temperature($57.9^{\circ}C$, $67.8^{\circ}C$, $74.3^{\circ}C$) within 20 days, and then stabilized to the range of $35.2{\sim}41.6^{\circ}C$ at the 30th day. The pH values of all treatments decreased on the first day. However, they were increased rapidly after three days and decreased again on 10~20 days. The pH values of all treatments at the final day were stabilized to the low alkali levels. The contents of total carbon during the period of composting tend to decrease and total nitrogen was increased for factor of reduction of volume. CEC value of all treatments during the period of composting tends to increase. The round paper chromatogram of extracted solution of KL sample was the sharpest and clearest among all treatments. The G.I. values of CB, KB, and KL in 30th day of composting were about 95.1, 77.7, and 98.7 in germination test using chinese cabbage, respectively. Conclusively, all turfgrass clippings used in this experiment were composted well, suitable as composting products standardized by KSC. The maturity of the final compost samples is best in KL, followed by CB and KB treatments. The turfgrass compost can contribute to the plant cultivation for environment-friendly farm, and the results of this study can become the basic data of turfgrass clippings compost. Further research on the mixing ratio of each material is required to produce compost of good quality.

  • PDF