DOI QR코드

DOI QR Code

Larch Pellets Fabricated with Coffee Waste and the Commercializing Potential of the Pellets

커피박과 낙엽송 목분을 이용한 펠릿 제조 및 이에 대한 상용화 검토

  • Yang, In (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Han, Gyu Seong (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Oh, Seung Won (Department of Wood Science & Technology, College of Agricultural Life Science, Chonbuk National University)
  • 양인 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 한규성 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 오승원 (전북대학교 농업생명과학대학 목재응용과학과)
  • Received : 2017.11.29
  • Accepted : 2017.12.29
  • Published : 2018.01.25

Abstract

This study was conducted to suggest the effective management and recycling processes of coffee waste, which can be easily obtained from coffee shops and coffee-related products industries. Prior to the fabrication of pellets, the potential of coffee waste as a raw material of pellet was investigated through the examination of its chemical compositions and fuel characteristics. Major gradient included in coffee waste was holocellulose, followed by fat/oil and protein. Coffee waste contained a small quantity of ash (0.7%), such as calcium, sodium, potassium and magnesium. Interestingly, coffee waste was easily dried probably due to its porous structure. Pellets fabricated with coffee waste and larch sawdust showed good fuel characteristics, such as moisture content, ash content, density and durability. The pellets exceed greatly the minimum requirements of $1^{st}$-grade wood pellet standard designated by National Institute of Forest Science (NIFOS). Particularly, the high calorific value of coffee waste showed the potential as a raw material of pellet. However, owing to high nitrogen and sulfur contents, coffee waste is like to be used as a raw material of wood pellet for combined heat and power plants equipped with a reduction system of $NO_x$ and $SO_x$ gases. On the other hand, 91 wt% larch sawdust and 9 wt% coffee waste are required to fabricate the $1^{st}$-grade wood pellets designated by NIFOS. Pellets fabricated with the conditions are estimated to have nitrogen content of 0.298% and sulfur content of 0.03%. Lastly, if amounts of coffee waste and sawdust in the production of wood pellets are adequately adjusted according to its purchasing price, the manufacturing cost of pellet can effectively be reduced. In addition, it is expected tp prepare the effective recycling process of waste and to relieve the environmental burden with the reduction of waste from the commercialization of coffee waste/larch pellets.

본 연구는 커피 생산 폐기물인 커피박의 효율적인 처리 및 재자원화 방안의 일환으로 목분과 혼합하여 고체 바이오 연료인 펠릿을 제조하고자 수행하였다. 먼저 펠릿 제조에 사용된 커피박의 화학적 조성과 연료적 특성을 조사하여 커피박의 펠릿 원료화 가능성을 조사하였다. 또한 다양한 조건에서 낙엽송 목분과 함께 펠릿을 제조한 후, 최적 펠릿 제조조건을 제시하였다. 커피박은 전섬유소, 단백질, 지방/오일로 구성되었으며, 0.7% 정도의 회분을 함유하고 있었다. 회분에 대한 정성분석 결과, 칼슘, 나트륨, 칼륨, 마그네슘 순으로 조사되었다. 커피박의 용이한 건조 특성으로 인한 낮은 함수율과 높은 발열량 그리고 커피박/낙엽송 펠릿의 연료적 특성(함수율, 회분 함량, 겉보기밀도, 내구성)이 국립산림과학원에서 고시한 목재펠릿 품질기준의 1급을 상회하여 커피박의 펠릿 원료화 가능성을 확인할 수 있었다. 그러나 원소분석 결과, 커피박의 높은 질소 및 유황 함량으로 고등급의 펠릿 제조용 원료보다는 $NO_x$$SO_x$를 효과적으로 제거할 수 있는 포집장치를 보유한 열병합발전소용 펠릿 원료로 적당할 것으로 생각한다. 그러나 커피박 및 낙엽송을 이용하여 1급 기준을 만족하는 펠릿을 제조하기 위하여 91 wt%의 낙엽송 목분과 9 wt%의 커피박이 필요할 것으로 추산된다. 이 조건에서 제조한 펠릿의 질소함량은 0.298% 그리고 유황 함량은 0.03%로 1급 기준을 만족하며 나머지 펠릿의 품질 항목에서도 모두 1급 기준을 상회할 것으로 예상된다. 마지막으로 커피박과 낙엽송의 구매가 및 각 등급의 목재펠릿 수요에 따라 펠릿 내의 커피박과 낙엽송 목분 양을 적절히 조절하여 펠릿을 제조할 경우, 생산비용의 절감 외에 폐기물의 이용에 따른 재자원화와 쓰레기 감량을 통한 환경부담 완화에도 일조할 것으로 생각한다.

Keywords

References

  1. Ahn, B.J., Chang, H.S., Cho, S.T., Han, G.S., Yang, I. 2013. Effect of the addition of binders on the fuel characteristics of wood pellets. Journal of the Korean Wood Science and Technology 41(6): 475-489. https://doi.org/10.5658/WOOD.2013.41.6.475
  2. Ahn, B.J., Chang, H.S., Lee, S.M., Choi, D.H., Cho, S.T., Han, G.S., Yang, I. 2014. Effect of binders on the durability of wood pellets fabricated from Larix kaempferi C. and Liriodendron tulipifera L. sawdust. Renewable Energy 62: 18-23. https://doi.org/10.1016/j.renene.2013.06.038
  3. Ahn, S.H. 2015. Effect of heating temperature and time of coffee waste on the adsorptivity of formaldehyde. Journal of the Korean Wood Science and Technology 43(3): 390-399. https://doi.org/10.5658/WOOD.2015.43.3.390
  4. American Society for Testing & Materials. 2005. Standard test methods for direct moisture content measurement of wood and wood-based materials. ASTM International, West Conshohocken, USA. ASTM D 4442-07.
  5. Baquero, M.C., Giraldo, L., Moreno, J.C., Suarez-Garcia, F., Martinez-Alonso, A., Tascon, J.M.D. 2003. Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid. Journal of Analytical and Applied Pyrolysis 70(2): 779-784. https://doi.org/10.1016/S0165-2370(02)00180-8
  6. Bergstrom, D., Israelsson, S., Ohman, M., Dahlqvist, S., Gref, R., Boman, C., Wasterlund, I. 2008. Effect of raw material particle size distribution on the characteristics of Scot pine sawdust fuel pellets. Fuel Processing Technology 89: 1324-1329. https://doi.org/10.1016/j.fuproc.2008.06.001
  7. Boonamnuayvitaya, V., Sae-ung S., Tanthapanichakoon, W. 2004 Preparation of activated carbons from coffee residues for the adsorption of formaldehyde. Separation and Purification Technology 42(2): 159-168. https://doi.org/10.1016/j.seppur.2004.07.007
  8. Cordero, T., Marquez, F., Rodriguez-Mirasol, J., Rodriguez, J. 2001. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80: 1567-1571. https://doi.org/10.1016/S0016-2361(01)00034-5
  9. Forest Biomass Energy Association. 2017. Status of wood pellets imported from abroad. http://www.biomassenergy.kr/, Cheongju, Republic of Korea.
  10. Garcia, R.A., Phillips, J.G. 2009. Physical distribution and characteristics of meat and bone meal protein. Journal of the Science of Food and Agriculture 89: 326-336.
  11. Han, G.S. 2012. Trend and outlook of wood pellet industry. Prospective of Industrial Chemistry 15(6): 54-61.
  12. Han, G.S., Yang, I., Sagong, M. 2012. Investigation of the basic properties of agricultural residues as a raw material for the production of agropellets and the evaluation of their fuel characteristics. Journal of Korea Society of Waste Management 29(2): 169-179.
  13. Holt, G.A., Blodgett, T.I., Nakamura, F.S. 2006. Physical and combustion characteristics of pellet fuel from cotton gin by-products produced by select processing treatments. Industrial Crops and Products 24(3): 204-213. https://doi.org/10.1016/j.indcrop.2006.06.005
  14. International Wood Market Groups. 2010. Monthly International Report - Wood Pellets Markets/Trends. http://www.unecefaoiufro.lsu.edu/marketing/documents/2010/gme10_03.pdf, Vancouver, Canada.
  15. Joeng, H.J. 2016. Coffee is Energy. http://www.women news.co.kr/news/view.asp?num=97244, Seoul, Republic of Korea.
  16. Khan, M.A., Ashraf, S.M. 2005. Development and characterization of a lignin-phenol-formaldehyde wood adhesive using coffee bean shell. Journal of Adhesion Science and Technology 19(6): 493-509. https://doi.org/10.1163/1568561054352577
  17. Kim, J.H. 2011. Exploratory studt on the strategic advantage of strong medium enterprise in Korean take-out coffee market Caffebene story. Korean Academy of High Potential Enterprises 2(1): 37-58.
  18. Kim, S.H., Yang, I., Han, G.S. 2015. Effect of sawdust moisture content and particle size on the fuel characteristics of wood pellet fabricated with Quercus mongolica, Pinus densiflora and Larix kaempferi sawdust. Journal of the Korean Wood Science and Technology 43(6): 757-767. https://doi.org/10.5658/WOOD.2015.43.6.757
  19. Korea Automobile Manufacturers Association. 2017. Statistics for the number of registered automobiles. http://www.kama.or.kr/InfoController, Seoul, Republic of Korea.
  20. Korea Energy Agency. 2017. Energy Statistics Handbook. KEA, Yongin, Republic of Korea.
  21. Korea Forest Service. 2017. Production and consumption amounts of wood pellets. https://www.forest.go.kr/newkfsweb/html/HtmlPage.do?pg=/resource/resource_040705.html&mn=KFS_02_01_04_07_05, Daejeon, Republic of Korea.
  22. Lee, M.H. 2017. Demand of wood pellets, approaching to 8.3 million tons at 2020. http://www.woodkorea.co.kr/news/articleView.html?idxno=28794, Seoul, Republic of Korea.
  23. Lee, S.G., Lee, K.H., Yang, I., Han, G.S. 2011. A method for making coffee-meal pellets fuel and coffee-meal pellets thereby. Korea Intellectual Property, Registration No. 10-103-3212. Daejeon, Republic of Korea.
  24. Lee, S.M., Ahn, B.J., Choi, D.H., Han, G.S., Jeong, H.S., Ahn, S.H.m Yang, I. 2013. Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust. Biomass Bioenergy 48: 1-9. https://doi.org/10.1016/j.biombioe.2012.10.015
  25. Lehtikangas, P. 2001. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 20: 351-360. https://doi.org/10.1016/S0961-9534(00)00092-1
  26. Li, Y., Liu, H. 2000. High-pressure densification of wood residues to form an upgraded fuel. Biomass Bioenergy 19: 177-186. https://doi.org/10.1016/S0961-9534(00)00026-X
  27. Mussatto, S.I., Ercilia M.S., Martins, M.S., Teixeira. 2011. Production, composition and application of coffee and its industrial residues. Food and Bioprocess Tech. 49(5): 661-672.
  28. National Institute of Forest Science. 2016. Quality Standards for the wood products. NIFOS, Seoul, Republic of Korea. 98-106.
  29. Obernberger, I., Thek, G. 2004. Physical characterization and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 27: 653-669. https://doi.org/10.1016/j.biombioe.2003.07.006
  30. Stakl, M., Granstrom, K., Berghel, J., Renstorm, R. 2004. Industrial process for biomass drying and their effects on the quality properties of wood pellets. Biomass Bioenergy 27: 621-628. https://doi.org/10.1016/j.biombioe.2003.08.019
  31. Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J., Tanada, S. 2005. Removal of lead ions in drinking water by coffee grounds as vegetable biomass. Journal of Colloid and Interface Science 281: 56-61. https://doi.org/10.1016/j.jcis.2004.08.083
  32. Yang, I., Ahn, B.J., Kim, M.Y., Oh, S.C., Ahn, S.H., Choi, I.G., Kim, Y.H. Han, G.S. 2014. Separation of reducing sugars from rape stalk by acid hydrolysis and fabrication of fuel pellets from its residues. Korean Journal of Plant Resources 27(1): 60-71. https://doi.org/10.7732/kjpr.2014.27.1.060
  33. Yang, I., Kim, S.H., Han, G.S. 2015. Effects of moisture content and particle size of sawdust and operating time of flat-die pelletizer on the fuel characteristics of wood pellets fabricated with Mongolian oak and Rigida pine sawdust. New & Renewable Energy 11(3): 1-10.
  34. Yang, I., Kim, S.H., Sagong, M., Han, G.S. 2016. Fuel characteristics of agropellets fabricated with rice straw and husk. Korean Journal of chemical Engineering 33(3): 851-857. https://doi.org/10.1007/s11814-015-0210-z
  35. Yang, I., Lee, G.H., Oh, S.C. 2013. Manufacture and performance evaluation of medium-density fiberboard made with coffee bean residue-wood fiber. Journal of the Korean Wood Science and Technology 41(4): 293-301. https://doi.org/10.5658/WOOD.2013.41.4.293