• Title/Summary/Keyword: recycling efficiency

Search Result 762, Processing Time 0.025 seconds

Separation of Heavy Metals from Metal-EDTA in Spent Soil Washing Solution by using Na2S (Na2S를 이용한 EDTA 토양세척수로부터의 중금속 분리)

  • Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.103-111
    • /
    • 2015
  • Soil washing with ethylenediaminetetraacetic acid (EDTA) is highly effective in the remediation of soils contaminated with heavy metals. The EDTA recycling process is a requisite for reducing the operating cost. The applicability of Na2S addition on the precipitation of heavy metals from the spent soil washing solution and thereby recycling of EDTA was investigated. Addition of Na2S into the single metal-EDTA and the mixed metal-EDTA solutions ([Na2S]/[metal-EDTA] ratio = 30, reaction time = 30 min and pH = 7~9) was highly effective in the separation of Cu and Pb from metal-EDTA complexes, but not for Ni. The Zn removal efficiency varied with pH and slightly increased upto 40% as the reaction time increased from 0 to 240 min which was longer than those for Cu and Pb. Ca(OH)2 was subsequently added to induce further precipitation of Zn and Ni and to reduce the Na2S dose. At the [Na2S]/[metal-EDTA] ratio of 10, the removal efficiencies of all heavy metals excluding Ni were above 98% with the dose of Ca(OH)2 at 0.002, 0.006 and 0.008 g into 100 mL of Cu-, Pb- and Zn-EDTA solutions, respectively. However, Ca(OH)2 addition was not effective for Ni-EDTA solution. A further research is needed to improve metal removal efficiency and subsequent EDTA recycling for the real application in field-contaminated soils.

Recycling of Organic Materials Using Purification by Recrystallization for Solution-Processed OLEDs (재결정화법에 의한 유기물 재활용 및 이를 이용한 습식 OLED 제작)

  • Lee, Jin-Hwan;Hong, Ki-Young;Shin, Dong-Kyun;Lee, Jin-Young;Park, Jong-Woon;Seo, Hwa-Il;Seo, Yu Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.65-69
    • /
    • 2016
  • We have investigated the possibility of recycling of an organic material that is wasted during thermal evaporation. To this end, we have collected a wasted organic material (N,N'-diphenly-N,N'-bis(1,1'-biphenyl)-4,4'-diamine(NPB)) from a vacuum chamber, purified it by recrystallization, and fabricated bilayer organic light-emitting diodes (OLEDs) with the recycled NPB. It is found that the surface roughness of thin films coated with the purified NPB is much enhanced. OLEDs fabricated by thermal evaporation of the purified NPB show lower device efficiency than OLEDs with the original NPB. However, the power efficiency of OLED fabricated by spin coating of the purified NPB is comparable with that of OLED with the original NPB. Therefore, such a recycling method by recrystallization would be more suitable for solution-processed OLEDs.

Effect of Flux on Recovery of Aluminum During Molten Metal Treatment of Aluminum Can Scrap (알루미늄 캔 스크랩의 용탕처리 시 알루미늄 합금 회수에 미치는 플럭스의 영향)

  • Han, Chulwoong;Ahn, Byung-Doo;Kim, Dae-Guen;Lee, Man Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.70-80
    • /
    • 2020
  • This study investigates the effect of flux type and mixing ratio on efficiency in aluminum can scrap recycling using induction furnace. The removal of surface coating layer of aluminum can scrap was possible through heat treatment at about 500 ℃ for about 30 min. The temperature for the melting process was set to be slightly above the melting temperature of the aluminium can scrap. The molten metal treatment was performed with different types of flux and mixing ratio. As a result, The optimum efficiency of Al recovery ratio was revealed when the process was performed with at least 3 wt.% of the flux (Salt and MgCl2 mixture of ratio 70:30) at 750 ℃. The mechanical property of the recovered Al alloy showed that the tensile strength is about 249 MPa and elongation is about 14 %. This result was found to be similar to the mechanical property of the virgin Al 5083 alloy.

A Study on the Cementation Reaction of Cadmium by Zinc Powders from Leaching Solution of Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지 침출액으로부터 아연 분말을 이용한 카드뮴의 치환반응에 대한 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jung, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • Cementation is one of economical and efficient recycling method precipitating the metal ion in solution by adding another active metal. In this study for optimizing cadmium recovery efficiency, it was performed as a function of the effect of pH, temperature, particle size, and input amount of zinc in 0.1 M $CdSO_4$ solution and Ni-Cd battery leaching solutions, respectively. The particle size of zinc and temperature were key factors for Cd cementation and it was confirmed that the input amount of 2.6 of Zn/Cd ratio using granular-type zinc was optimal condition for selective Cd recovery efficiency at $25^{\circ}C$.

Investigation on the operational state of the public food waste treatment facilities and suggestions on their efficient operational management (음식물류폐기물 공공 자원화시설의 운영실태 조사를 통한 처리공정별 효율적인 운영방안 검토)

  • Jang, Yun-Hyeok;Park, Joon-Seok;Kim, Joung-Dae;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.47-56
    • /
    • 2010
  • At present, 265 national food waste recycling facilities have been operated by public facilities 95 and private facilities 160. it has continuously installed a food waste treatment facility from 1997. The government set up and implemented guidelines and inspection standards for the installation and operation of the facilities. However, unclear detailed examination items, designs and process standards for the installation procedures of the facilities are causing problems due to the unskilled operation management system, decrease in efficiency and defects of a facility. This study conducted mail and site surveys on 95 public food waste recycling facilities that it suggest the ways to operate facilities which minimize problems. At the result of investigation, a pre-treatment facility was not installed 2 systems(2 inputting facilities) and hopper covers and food was overloaded. also the transportation amount was excessive. In case of a main treatment facility, the secondary environmental pollution was caused by inexperienced operation and the efficiency of the facility was reduced due to excessive input of food. also the operation management standards of the facilities were inappropriate. The odor and food waste leachate treatment facility is investigated as problems that are unskilled operation, lack of regular inspection and inappropriate capacity of the treatment facility. Based on the problems found through the investigation, it suggested some ways of efficient operation. this study might contribute to minimize mistakes and defects and improve the efficiency of install and operation course of food waste recycling facilities through finding.

Promoting Resources Efficiency in the Life-cycle of Resource for Sustainable Resource Management (지속 가능한 자원관리를 위한 자원 전과정에서의 효율적 자원이용 촉진)

  • Lee, Il-Seuk;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 2015
  • Recently, the importance of efficient resource management has been highlighted due to the uncertainty of its security. Developed countries promote the legislative provision and transition of industrial structure to maximize the efficiency of resource use through supporting the sustainable resource management at national level. Meanwhile Korea has very sensitive industrial structure along with the international resource supply and demand conditions. It is acutely necessary to improve the resource productivity with the various action plans such as the increase of recycling rate and the establishment of methodical resource management system. Especially, the study on the direction of each flow stage and the concrete action plans for using resource efficiently in the life-cycle of resource will be required. Therefore, this study suggests the future direction of each flow stage(production stage and circulatory stage), and the concrete action plans to improve the present problems of resource management in Korea.

Applicability of the Energy Recovery in Automotive Shredder Residue (ASR) Recycling Facilities (폐자동차 파쇄잔재물(ASR) 재활용 시설의 에너지 회수효율 적용성 평가)

  • Yoo, Ha Nyoung;Kang, Jun Gu;Kwon, Young Hyun;Ko, Young Jae;Kwon, Jun Hwa;Park, Ho Yeun;Jeon, Tae Wan;Lee, Young Kee
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.660-669
    • /
    • 2018
  • Domestic automotive shredder residue (ASR) recycling facilities must comply with 60% of the energy recovery criteria calculated by the waste control act, based on resource circulation of electrical and electronic equipment and vehicles. The method of calculating energy recovery criteria was newly enacted on November 6, 2017, and it has been judged that it is necessary to consider applicability. In this study, the energy recovery efficiency of 7 units was calculated by past and present calculation methods. Furthermore, this study attempts to find applicability and a method of increasing the energy recovery efficiency by taking advantage of available potentials. An analysis of the calculation results showed that the average values calculated by past methods, present methods, and the method that includes available potentials are 76.35%, 70.68%, and 78.24%, respectively. Therefore, the new calculation method for energy recovery efficiency is also applicable to domestic automotive shredder residue recycling facilities.

Evaluation of the Basic Property Evaluation of Eco-powder, a Hydrothermal Synthesis Product for Improving Waste Vinyl Recycling Efficiency (농촌 폐비닐 활용률 제고를 위한 수열합성 생성물인 에코 파우더(Eco-powder)의 기초물성 평가)

  • Sun-Mi Choi;Min-Chul Lee;Jin-Man Kim;Young-Gon Son;Nam-Ho Kim
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.48-57
    • /
    • 2024
  • This study aimed to improve utilization of the Class C vinyl waste generated in rural areas based on a preliminary investigation on the use of eco-powder, generated through pyrolysis, as a raw material for plastic. The efficiency of pre-processing treatments in controlling ash content of the generated eco-powder and its effect on the basic properties of manufactured plastic were evaluated. The basic properties included ash content of the compressed eco-powder at different levels of ash content, impact strength, flexural strength, and tensile strength. The experimental results confirmed that pre-processing improved the separation efficiency of soil particles and vinyl waste through physical impact. The eco-powder with ash content of less than or equal to 26% was found to satisfy the target performance during impact strength, flexural strength, and tensile strength evaluation. Thus, it was confirmed that the Class C vinyl waste, having low utilization and recovery rates, could be effectively utilized as a plastic raw material after optimum thermal treatment and physical processing using the eco-powder.

마이크로 블라스터를 이용한 태양전지용 재생웨이퍼에 관한 연구

  • Lee, Yun-Ho;Gong, Dae-Yeong;Jeong, Sang-Hun;Kim, Sang-Won;Kim, Dong-Hyeon;Seo, Chang-Taek;Jo, Chan-Seop;Lee, Jong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.276-276
    • /
    • 2009
  • Solar cells has been studied mainly the high efficiency and lower prices. Using recycling wafer as a way to realize their money in it, there is a way to manufacture a solar cell substrate. How to play the recycling wafer, CMP(Chemical Mechanical Polishing) and remelting process is the complex and the expensive equipment. However, using the Micro-Blaster, the process easier, and cheaper prices. Micro-Blaster confirmed that the remaining amount of material left after the process recycling wafer surface.

  • PDF

Analysis of Reducing Characteristics of Direct Reduced Iron using Blast Furnace Dust

  • Yun, Young Min;Chu, Yong Sik;Seo, Sung Kwan;Jeong, Jae Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.444-449
    • /
    • 2016
  • Industrial by-products generated by integrated iron and steel manufacture cause environmental pollution. The by-products contain not only iron element but also harmful substances. Therefore, in view of to waste recycling and environmental preservation, production of sponge iron using the by-product is considered an effective recycling method. In this study, reduction efficiency of pellets from blast furnace dust was measured. Metallization was found to be increased, as $C/Fe_{total}$ ratio and reaction time were increased. The pellets were formed into a globular shape, and calcined for 60 minutes at $1100^{\circ}C$ in an electric furnace. Phase changes were analyzed using an X-ray diffractometer. Microstructures of the pellets were observed by a scanning electron microscope.