• Title/Summary/Keyword: recycling efficiency

Search Result 772, Processing Time 0.021 seconds

Study on Leaching Behavior for Recovery of Ga Metal from LED Scraps (LED 공정스크랩으로부터 Ga 회수를 위한 침출 거동 연구)

  • Park, Kyung-Soo;Swain, Basudev;Kang, Lee Seung;Lee, Chan Gi;Uhm, Sunghyun;Hong, Hyun Seon;Shim, Jong-Gil;Park, Jeung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.414-417
    • /
    • 2014
  • LED scraps consisting of highly crystalline GaN and their leaching behavior are comprehensively investigated for hydro-metallurgical recovery of rare metals. Highly stable GaN renders the leaching of the LED scraps extremely difficult in ordinary acidic and basic media. More favorable state can be obtained by way of high temperature solid-gas reaction of GaN-$Na_2CO_3$ powder mixture, ball-milled thoroughly at room temperature and subsequently oxidized under ambient air environment at $1000-1200^{\circ}C$ in a horizontal tube furnace, where GaN was effectively oxidized into gallium oxides. Stoichiometry analysis reveals that GaN is completely transformed into gallium oxides with Ga contents of ~73 wt%. Accordingly, the oxidized powder can be suitably leached to ~96% efficiency in a boiling 4 M HCl solution, experimentally confirming the feasibility of Ga recycling system development.

Study on Recycling Technology of Waste Artificial Marble using Starch (전분을 이용한 폐인조대리석의 재활용 기술에 관한 연구)

  • Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.6
    • /
    • pp.433-440
    • /
    • 2018
  • The pyrolysis has been universally applied to recycle the waste artificial marble. However, the existing heat treatment equipment has relatively low heat transfer efficiency into the inner part of the waste artificial marble. Besides, it leads to unnecessary excessive gas during the partial carbonization of the polymethyl methacrylate (PMMA) and raises the risk of fire due to heat at an extremely high temperature. This study suggests the process of pyrolysis at the formation state after adding the starch to waste artificial marble to overcome above-mentioned problems. As the result of experiments, this method showed that the pyrolysis of waste artificial marble was greatly improved at comparatively low temperature condition of $350^{\circ}C$. Moreover, it also manifested the effect on securing the stability and energy savings necessary for the recovery of methyl methacrylate (MMA) and ${\alpha}$-alumina (${\alpha}-Al_2O_3$).

A Study on the CO2 Emission Reduction Effect relating to the Water Usage Reduction in Multi-family Residential Building (공동주택 건물의 상수도 절감량에 따른 CO2 배출량 저감효과에 관한 연구)

  • Cho, Su-Hyun;Kang, Hae-Jin;Rhee, Eon-Ku
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.126-133
    • /
    • 2011
  • The current world wide interest in environmental issues has moved from energy conservation to $CO_2$emission reduction. Recently, according to the increase in demand for water resources, insufficient potable water circumstance is supposed, unless there are corresponding in crease in water conservation and water recycling. This study has attempted to analyze $CO_2$emission reduction by water saving strategies like installation water saving devices, rain water harvesting and grey water system. To do this, this research investigates applicable water conservative strategies by literature review and calculated total water saving. The results show that (1) firstly, the water usage and $CO_2$ emission could be reduced up to 44%, (2) $CO_2$ emission reduction by water saving devices and rainwater harvesting system is about 47.7%, and (3) water usage and $CO_2$ emission reduction by grey water system is about 66%. In the future, this paper will be utilized for water management from the early design stage to maintenance stage of water glutton building.

A Scheme for Reuse of Residual Energy in a Multi-cell Battery System (다중전지 시스템에서 잔류 에너지의 재활용 방법)

  • Yun, Woong-Jin;Baek, Je-In
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.21-27
    • /
    • 2009
  • As portable electronic systems being used more often, it becomes a more important issue to lengthen the lifetime of the power battery of the system, for instance, by developing batteries of a higher efficiency. A simple as well as practical method to lengthen the lifetime is to use multiple batteries that are connected in parallel. But in this paper we present a new idea in using multiple batteries, with which the residual energy of the battery can be used in the sense of recycling. The idea is based on a usual phenomenon that a battery cell that has been used until its voltage has dropped below a reference level may still have some residual energy, due to which the voltage can recover when the cell takes a rest for a while. As a practical realization scheme of this idea, a multi-cell configuration method with a cell selection switch is introduced, and its feasibility has been examined by performing experimental observations on the behavior of battery discharge. It has been found that the lifetime of an Alkaline primary battery cell can be lengthened approximately by one or two hours with the proposed method.

Nutrienr cyclings in mongolian oak(quercus mongolica) forest (신갈나무 숲의 營養監類 循環)

  • Kwak, Young-Se;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.15 no.1
    • /
    • pp.35-46
    • /
    • 1992
  • To elucidate nutrient cyclings such as nitrogen, phosphorus and potassium in mongolian oak(quercus mongolica) forest, nutrient elements of precipitation, throughfall, outflow, soil, various plant organ and litter were determined at mt.nambyeongsan, pyeongchang-gun, gangwon province in central part of korean peninsula. Annual precipitation input, throughfall and outflow of nutrientswere 10.3, 8.6 and 4.2 kg/ha for the N, 0.11, 0.24 and 0.02 kg/ha for the Pand 1.3, 10.9 and 1.2 kg/ha for the K, respectively. Inseasonal changes of nutrient concentrations, N, P and Kconcentrations which were rich in young leaves decreased steadily until autumn and decreased abruptly during autumnal yellowing. The standing N, P and K concent were 565, 37 and 257 kg/ha for standing phytomass of overstory, 33, 3 and 18 kg/ha for understory, 132, 3.6 and 14 kg/ha for litter on ground including deadwood and 20, 752, 14 and 420 kg/ha for the soil, respectively. The amounts of annual uptake, reture and retain were 174.2, 57.2, 117.2 kg/ha for the N, 9.9, 3.5, 6.4 kg/ha for the P and 73.2, 30.3, 42.9 kg/ha for the K, respectively. Reabsorption efficiency, ratio of the nutrient amount reabsorbed into woody organs to that in the mature leaves before shedding, was 71%(or 99.8 kg/ha in the amount), 69%(or 5.1 kg/ha) and 57%(or 33.1% kg/ha) and recycling coeffciently made with which the large amount of nutrients is absorbed through roots during growing season(UPTAKE) and reasorbed from the leaves before shedding(RETAIN) but the small amount of nutrients is returned through litterfall(RETURN).

  • PDF

Practices of Sustainable Agriculture in Korea With References for the Development of Sustainable Rice Production Systems (한반도에서 지속농업의 실천방안 지속적 벼 생산체계 개발을 중심으로)

  • Choe Zhin Ryong;Kim Jeong Bu;Cho Yong Son
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.10a
    • /
    • pp.288-312
    • /
    • 1998
  • In Korea, chemical fertilizers and agricultural chemicals have had a significant impact on food production and these are today thought to be an indispensable part of modern agriculture. On the other hand, socioeconomical and IMF and WTO status in Korea are constant reminders of the vulnerability of our fossil fuel dependent agriculture. A new crop production system to improve economic, environmental and production efficiency must be exploited. Our particular concern has been given to an integrated cropping system involving recycling of crop residues, soil and N management, biological N fixation and multipurpose legumes. As a new integrated crop production system, a no-till direct-sown rice-vetch relaying cropping system has been proposed in this paper. The formulation of this system is based on the conception that N fertilizers being neither limitlessly available nor affordable, the current high-input crop production systems have produced troubled results severe labour shortage ill rural areas, balance of payment, environmental degradation and reduction of human health far exceed economic concerns. A natural and logical consequence is that long-term sustainability of agricultural systems must rely on the use and effective management of internal resources. Based on the information obtained throughout a series of experiments last years we have proved that the no-till direct-sown rice-vetch relaying cropping system dictates biological alternative which can augment, and in some cases replace, N fertilizers. Comprehensive discussions were made for the proposed system and it concluded that the system can offer an economically attractive and ecologically sound means of reducing external nitrogen input and improving the quality and quantity of internal resources, and consequently improving the farmers as well as the national returns.

  • PDF

Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor (충진층 반응기에서 고정화 cellulase에 의한 셀룰로스 가수 분해)

  • Kang, Byung Chul;Lee, Jong Baek
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1365-1370
    • /
    • 2013
  • Immobilized cellulase on weak ion exchange resin showed a typical Langmuir adsorption isotherm. Immobilized cellulase had better stability with respect to pH and temperature than free cellulase. Kinetics of thermal inactivation on free and immobilized cellulase followed first order rate, and immobilized cellulase had a longer half-life than free cellulase. The initial rate method was used to characterize the kinetic parameters of free and immobilized enzyme. The Michaelis-Menten constant $K_m$ was higher for the immobilized enzyme than it was for the free enzyme. The effect of the recirculation rate on cellulose degradation was studied in a recycling packed-bed reactor. In a continuous packed-bed reactor, the increasing flow rate of cellulose decreased the conversion efficiency of cellulose at different input lactose concentrations. Continuous operation for five days was conducted to investigate the stability of long term operation. The retained activity of the immobilized enzymes was 48% after seven days of operation.

A Basic Study on the Mobile Separator and Sorter Development of Small and Medium-sized Discharge Site's Mixed Construction Waste in Rural Area (농촌지역 혼합건설폐기물의 중·소규모 배출현장용 이동식 분리선별기 개발을 위한 기초연구)

  • Kim, Byung-Yun;Park, Ji-Sun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • This study aimed to develop a mobile separating and sorting device for discharge sites to separate and sort mixed construction waste generated in small and medium scale in small provincial cities into inorganic materials and combustible materials. The study results can be summarized as follows: 1) As a result of analyzing the existing domestic technology for the separating and sorting mixed construction waste, a device sorting the waste by fusing the vibration screen, disc screen, air blowing methods and the separating and sorting the combustible waste is applied in Korea. 2) In foreign countries, the air blowing, screen, gravity sorters are used for separating and sorting combustible waste in the same way as in Korea. Especially German T Company suggests a construction waste separating and sorting system using an optical sorter. 3) As for the test device for separating and sorting mixed construction waste to be buried in landfill, the processing capacity was set as 16 tons per day. 4) For separating and sorting inorganic materials by granularity, this study set a trommel with two types of diameter as a basic. To operate the mobile all-in-one system, the device is designed to locate a conveyor, a combustible waste conveying device, inside of the trommel. 5) The device is designed in a mobile mode under the concept of primary separating and sorting device, and it can be transported using a 2.5-ton truck minimum. The diameter and length of the trommel are designed to be within 1500mm and 3000mm, respectively. In a further study, an optimized separating and sorting technology is planned to be presented through an experimental study for processing efficiency analysis at the mixed construction waste site by manufacturing the pilot experiment facility reflecting the design elements in the result of this study.

Ag2Se Modified TiO2 Heterojunction with Enhanced Visible-Light Photocatalytic Performance

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.657-664
    • /
    • 2021
  • To build a highly active photocatalytic system with high efficiency and low cast of TiO2, we report a facile hydrothermal technique to synthesize Ag2Se-nanoparticle-modified TiO2 composites. The physical characteristics of these samples are analyzed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and BET analysis. The XRD and TEM results show us that TiO2 is coupled with small sized Ag2Se nanoplate, which has an average grain size of about 30 nm in diameter. The agglomeration of Ag2Se nanoparticles is improved by the hydrothermal process, with dispersion improvement of the Ag2Se@TiO2 nanocomposite. Texbrite BA-L is selected as a simulated dye to study the photodegradation behavior of as-prepared samples under visible light radiation. A significant enhancement of about two times the photodegradation rate is observed for the Ag2Se@TiO2 nanocomposite compared with the control sample P25 and as-prepared TiO2. Long-term stability of Ag2Se@TiO2 is observed via ten iterations of recycling experiments under visible light irradiation.

A Study on the Reduction of $CO_2$ Emission by the Application of Clean Technology in the Cement Industry (시멘트산업공정에서의 $CO_2$배출량 저감을 위한 청정기술 적용에 관한 연구)

  • Park, Young-G.;Kim, Jeong-In
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2010
  • The feasibility of clean technology to minimize the $CO_2$ emission by recycling and reuse the waste materials and energy have been studied for the cement industry. A life cycle assessment (LCA) was performed for an alternative raw material-supply method to use the molted slag as the major raw material in the cement clinker manufacturing. Using this new method, a 60% of $CO_2$ could be reduced that comes out during the decarboxylation from the cement rotary kiln. The energy-efficiency improvement and the alternative energy methods that had been determined in our previous study through the environmental assessment of cement industry were applied to the study for the reduction of $CO_2$ emission. The natural gas, one of the fossil fuels, was also used as the first choice to get the result at the earliest time by the most economic and the most efficient green technology and to switch into the carbon neutral energy consumption pattern.