Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.12.657

Ag2Se Modified TiO2 Heterojunction with Enhanced Visible-Light Photocatalytic Performance  

Zhu, Lei (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Tang, Jia-Yao (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Fan, Jia-Yi (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Sun, Chen (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.31, no.12, 2021 , pp. 657-664 More about this Journal
Abstract
To build a highly active photocatalytic system with high efficiency and low cast of TiO2, we report a facile hydrothermal technique to synthesize Ag2Se-nanoparticle-modified TiO2 composites. The physical characteristics of these samples are analyzed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and BET analysis. The XRD and TEM results show us that TiO2 is coupled with small sized Ag2Se nanoplate, which has an average grain size of about 30 nm in diameter. The agglomeration of Ag2Se nanoparticles is improved by the hydrothermal process, with dispersion improvement of the Ag2Se@TiO2 nanocomposite. Texbrite BA-L is selected as a simulated dye to study the photodegradation behavior of as-prepared samples under visible light radiation. A significant enhancement of about two times the photodegradation rate is observed for the Ag2Se@TiO2 nanocomposite compared with the control sample P25 and as-prepared TiO2. Long-term stability of Ag2Se@TiO2 is observed via ten iterations of recycling experiments under visible light irradiation.
Keywords
heterogeneous; hydrothermal; $Ag_2Se@TiO_2$; DPCO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. D. Meng, L. Zhu, K. Ullah, S. Ye and W. C. Oh, Mater. Res. Bull., 56, 45 (2014).   DOI
2 L. Zhu, M. M. Peng, K. Y. Cho, S. Ye, S. Sarkar, K. Ullah, Z. D. Meng and W. C. Oh, J. Korean Ceram. Soc., 50, 504 (2013).   DOI
3 S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, A. Nounah, A. Ihlal and Y. Ait-Ichou, Mater. Sci. Eng., C, 29, 1616 (2009).   DOI
4 D. Chatterjee and S. Dasgupta, J. Photochem. Photobiol., C, 6, 186 (2005).   DOI
5 V. Augugliaro, M. Litter, L. Palmisano and J. Soria, J. Photochem. Photobiol., C, 7, 127 (2006).   DOI
6 Y. Xie, S. H. Heo, Y. N. Kim, S. H. Yoo and S. O. Cho, Nanotechnology, 21, 015702 (2010).   DOI
7 L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, Chem. Commun., 10, 1030 (2002).
8 O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal., B, 98, 27 (2010).   DOI
9 K. John, D. T. Manolis, D. P. George, N. A. Mariza, S. T. Kostas, G. Sofia, B. Kyriakos, K. Christos, O. Michael and L. Alexis, Appl. Catal., B, 117, 36 (2012).
10 X. L. Zhang, Y. H. Tang, Y. Li, Y. Wang, X. N. Liu, C. B. Liu and S. L. Luo, Appl. Catal., A, 457, 78 (2013).   DOI
11 A. Ahmad, F. Tezcan, G. Yerlikaya, Z. Rehman, H. Paksoy and G. Kardas, J. Alloys Compd., 868, 159133 (2021).   DOI
12 P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank and A. J. Nozik, J. Phys. Chem. B, 110, 25451 (2006).   DOI
13 L. Zhu, S. Ye, A. Ali, K. Ullah, K. Y. Cho and W. C. Oh, Chin. J. Catal., 36, 603 (2015).   DOI
14 H. Q. Cao, Y. J. Xiao, Y. X. Lu, J. F. Yin, B. J. Li, S. S.Wu and X. M. Wu, Nano Res., 3,863 (2010).   DOI
15 S. Mishra, D. Du, E. Jeanneau, F. Dappozze, C. Guillard, J. L. Zhang and S. Daniele, Chem. Asian J., 11, 1658 (2016).   DOI
16 L. Zhu, G. Trisha, C. Y. Park, Z. D. Meng and W. C. Oh, Chin. J. Catal., 33, 1276 (2012).   DOI
17 X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700 (2005).   DOI
18 L. Zhu, Z. D. Meng and W. C. Oh, J. Nanomater., 2012, 1 (2012).
19 A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem. Rev., 95, 735 (1995).   DOI
20 X. D. Yu, Q. Y. Wu, S. C. Jiang and Y. H. Guo, Mater. Charact., 57, 333 (2006).   DOI
21 Z. D. Meng, L. Zhu, T. Ghosh, C. Y. Park, K. Ullah, V. Nikam and W. C. Oh, Bull. Korean Chem. Soc., 33, 3761 (2012).   DOI
22 F. J. Zhang, J. Liu, M. L. Chen and W. C. Oh, J. Korean Ceram. Soc., 46, 263 (2009).   DOI
23 H. Li, B. Zhu, Y. Feng, S. Wang, S. Zhang and W. Huang, J. Solid. State. Chem., 180, 2136 (2007).   DOI
24 K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005).   DOI
25 Q. Shen, D. Arae and T. Toyoda, J. Photochem. Photobiol., A, 164, 75 (2004).   DOI
26 W. S. Sheldrich and M. Wachold, Angew. Chem. Int. Ed. Engl., 36, 206 (1997).   DOI
27 D. Zhang, R. Wu , R. M. Cao and S. Xu, Mater. Lett., 300, 130218 (2021).   DOI
28 C. T. Helmes, C. C. Sigman, V. A. Fung, K. Thompson, M. K. Doeltz, M. Mackie, T. E. Klein and D. Lent, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 19, 97 (1984).   DOI