• Title/Summary/Keyword: recycling efficiency

Search Result 762, Processing Time 0.028 seconds

Recovery of Yttrium from the Sludge Generated in Recycling Process of the Obsolete CRT (폐CRT의 재활용 공정에서 발생한 슬러지로부터 Y의 회수)

  • 전준미;이재천;정진기;김남철
    • Resources Recycling
    • /
    • v.10 no.6
    • /
    • pp.22-28
    • /
    • 2001
  • A study on the recovery of yttrium was conducted using the phosphor sludges generated in the recycling process of obsolete CRTs. Yttrium was leached by HCl and $HNO _3$. The leaching efficiency of yttrium was extensively investigated in terms of acid concentration, leaching temperature and time, and pulp density. Yttrium and lead was recovered from leaching solutions also by precipitation method. The leaching behavior of yttrium was similar in both acids. The leaching efficiency of yttrium for both acids increased with time at the conditions of 3.0M, $90^{\circ}C$, and 280 g/L of pulp density. After 40 minutes, it was saturated to 93% and 90% for HCl and HNO$_3$respectively. Yttrium was recovered from leaching acid solution by the addition of $H_2$$C_2$$O_4$while lead was removed as $PbSO_4$by $Na_2$ $SO_4$.

  • PDF

A Study on the Optimal Method for recycling the Waste Electronics' Reverse Logistics (폐전자제품 회수물류 최적화 연구)

  • Lee, Seok Kee;Roh, Jae-Whak;Cho, Yeong Bin
    • International Commerce and Information Review
    • /
    • v.16 no.4
    • /
    • pp.171-190
    • /
    • 2014
  • A short consumption cycle caused by the technological development and the diversification of customer lead to both the dynamic growth of the industry and the waste recycling issue at the same time. Including Korea, the situation is particularly worrisome in some countries, such as India and China, where acute environmental hazards have resulted from a combination of a lack of recycling centers' capacity and the domination of a large backyard recycling sector. A study about to maximize the current recycling center efficiency with minimal changes is required. In this study, we suggest the optimal location selection method for the recycling center based on the well-known reverse logistics cost minimization model. An actual recycling data about a specific electronic equipment and region in Korea are used for the verification of the method suggested.

  • PDF

Trend on Recycling Technologies for Display Wastes analysed by the Patents and Literature Review (특허(特許)와 논문(論文)으로 본 폐(廢) 디스플레이 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Sung-Kyu;Lee, Chan-Gi;Hong, Hyun-Seon;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.65-73
    • /
    • 2012
  • There are several kinds of displays such as liquid crystal display (LCD), cathode ray tube (CRT), plasma display panel(PDP), light emitting diode (LED), organic light emitting diode (OLED), etc. Nowadays, recycling technologies of waste displays have been widely studied from economy and efficiency points of view. In this paper, patents and literature on the recycling technologies of the waste displays have been comprehensively analyzed. The search was limited to the open patents of USA (US), European Union (EU), Japan (JP), and Korea (KR) and SCI journals published from 1980 to 2011. Patents and journals were systematically compiled and collected using key-words search and filtered by pre-set filtering criteria. The trends of the patents and journals were thus analyzed according to the years, countries, companies, and technologies.

The Enhancement of Recycling Processes Efficiency of Lithium Ion Batteries; A Review (리튬이온전지 재활용공정 효율 향상을 위한 공정개선 연구동향)

  • Kyoungkeun Yoo;Wonhwa Heo;Bumchoong Kim
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.24-36
    • /
    • 2024
  • The lithium-ion battery recycling process has been classified into direct recycling, hydrometallurgical process, and pyrometallurgical process. The commercial process based on the hydrometallurgical process produces black mass through pretreatment processes consisting of dismantling, crushing and grinding, heat treatment, and beneficiation, and then each metal is recovered by hydrometallurgical processes. Since all lithium-ion battery recycling processes under development conducts hydrometallurgical processes such as leaching, after the pretreatment process, to produce precursor raw materials, this article suggests a classification method according to the pretreatment method of the recycling process. The processes contain sulfation roasting, carbothermic reduction roasting, and alloy manufacturing, and the economic feasibility of the lithium-ion battery recycling process can be enhanced using unused by-products in the pretreatment process.

Characteristics of treatment by Electrolysis with a change of electrodes in sanitary landfill leachate (전기분해법에서의 전극변화에 따른 위생매립장 침출수의 처리특성)

  • Huh, Mock;Kim, Byung-Hyun;Kim, Gwang-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.68-74
    • /
    • 2002
  • This study was performed to examine the availability of electrolysis for removal of remaining biologically refractoty humus and residual color of leachate which is biologically pretreated in domestic waste matter sanitary landfill by recycling to landfill. The obtained results were as follows; 1) The electrolysis of leachate through covered bed represented that the removal efficiency of CODcr and color range from 70~80%, in color removal the only electrolysis for a treatment of leachate meet the critia of effluent. 2) The highest removal efficiency was represented in pH 7~8. 3) At anode used Al, Fe, Stainless the removal efficiency of CODcr and color was high in order of Fe, Al, stainless, in considering the settled ability of reaction product in economic or after electro coagulation the removal efficiency was highest when anode was the Fe electrode. 4) In this study conditions for removed both CODcr and Color ar the same time represented thar anode was used Fe, electrode-distance was 2cm and reaction time was 40min in 8volts.

  • PDF

Stoichiometric Study for Nitrogen Removal in Anoxic-oxic Process (무산소-산소 공정에서 양론적 질소제거 연구)

  • Lee, Byung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1222-1227
    • /
    • 2005
  • Optimal sludge recycling ratio for maximum total nitrogen(TN) removal efficiency was calculated stoichiometrically using nitrification and denitrification reaction with given influent water qualities in anoxic-oxic process which was one of the popular nitrogen removal system. The water quality items for stoichiometric calculation were ammonia, nitrite, nitrate, alkalinity, COD, and dissolved oxygen which could affect nitrification and denitrification. Optimal sludge recycling ratio for maximum TN removal efficiency was expressed by those five influent water qualities. TN concentration calculated stoichiometrically had kept good relationship with reported TN concentration in each tank and final effluent. In addition, it was possible to expect the TN concentration in final effluent by stoichiometric calculation within ${\pm}5.0\;mg/L$.

Continuous Cultivation of Lactobacillus rhamnosus with Cell Recy-cling Using an Acoustic Cell Settler

  • Yang, Yun-Jeong;Hwang, Sung-Ho;Lee, Sang-Mok;Kim, Young-Jun;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.357-361
    • /
    • 2002
  • Continuous production of lactic acid from glucose by Lactobacillus rhamnosus with cell recycling using an acoustic cell settler was carried out. The performance of the system, such as the concentration of cell and product were compared with the control experiment without recycling. The acoustic settler showed cell separation efficiency of 67% during the continuous operation and the cell concentration in the fermentor with recycle exceeded that of the control by 29%. Com-pared with the control, tactic acid production was increased by 40%, while glucose consumption was only increased by 8%. The higher value of lactic acid production to substrate consumption (Yp/s, product yield coefficient) achieved by cell recycling is interpreted to indicate that the recycled cell mass consumes less substrate to produce the same amount of product than the control Within system environmental changes due to the longer mean cell residence time induced the cells maintaining the metabolic pathways to produce Less by-Product but more product, lactic acid.

Recycling of Wastepaper(V): -Calcium Hardness Control of Process Water for Zero-Discharge System- (고지재상연구 (제5보) -공정수 폐쇄화를 위한 칼슘경도 조절-)

  • 지경락;류정용;신종호;송봉근;오세균
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.15-24
    • /
    • 1999
  • A new technique for recycling of white water was developed in order to reduce the calcium hardness in a closed OCC recycling system. Calcium ions present in the white water were precipitated as calcium carbonate by reacting with sodium carbonate, and the precipitated $CaCO_3$ was removed from the system using a flotation fractionation method, which has been commonly used in deinking process. In the flotation stage, a mixed gas of $CO_2$-air was purged into the flotation cell because the pH of $Na_2CO_3$-treated white water was reduced to neutral by $CO_2$ gas. Since $CaCO_3$ precipitate tends to stick onto fine fiber surface and then selectively removed from the white water, a proper amount of suspended solid in white water acts as an important factor for deciding the removal efficiency. By the application of $Na_2CO_3$ addition-$CO_2$ flotation to the short circulated white water, the calcium hardness was significantly reduced by 87% and more. Removal of calcium ions with fine fibers led to a drainage improvement, reduction of fresh water consumption, and enhanced efficiency of wet-end chemicals.

  • PDF

A Novel Method for Calcium Hardness Control of Closed OCC Recycling System

  • Ow, Say-Kyoun;Shin, Jong-Ho;Song, Bong-Keun;Ryu, Jeong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.164-171
    • /
    • 1999
  • A new technique for recycling process water was developed in order to reduce the calcium hardness of the closed OCC recycling system. Calcium ions present in the white water were precipitated as calcium carbonate by a reaction with sodium carbonate and the CaCO$_3$precipitates were easily removed from the system by a dissolved air flotation(DAF) method. After the DAF stage, CO$_2$-gas was purged into the water because the pH of Na$_2$CO$_3$-treated white water was reduced to neutral by CO$_2$gas. Since CaCO$_3$precipitate tends to stick onto the fine fiber surface and then is selectively removed from the water, a proper amount of suspended solid in the process water acts as an important factor in deciding the removal efficiency. By the application of Na$_2$CO$_3$addition - DAF - CO$_2$purging to the short circulated white water the calcium hardness was significantly reduced by 92% and more. The removal of calcium ions with fine fibers led to drainage improvement, reduction of fresh water consumption, and enhanced efficiency of wet-end chemicals.

An Analysis of Simulation Model for Smelting Reduction Process of Waste Containing Iron Oxide (함철 폐기물의 용융환원 공정에 관한 분석연구)

  • Dong-Joon Min
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.17-24
    • /
    • 1996
  • The computer simulation model was established to verify the applicability of smelting reduction concept to treatment of industrial wastes which becomes issue on the enviromental and recycling view point. Computer simulation model provides as following results. The increase of post combustion ratio(PCR) and heat transfer efficiency of PC energy(HTE) is effective ways to save energy. But, in order to increase PCR, recovery efficiency of post combustion energy(HTE) have to be higher than 85% HTE considering refractory life and saving energy together. Coke is most useful fuel source because it shows lowest dependence of PCR and low hydrogen content. The quality of hot metal of current process would be expected to the similar level with that of blast furnace. The utilization of scrap and Al dross can be also possible to maximize the advantages of current process which is high temperature and chemical dilution with hot metal and slag. In case of scrap, energy consumption was slightly increases because of heating up energy of scrap. Consquently, current process concept provides the possibility of intergrating recycles of industrial wastes materials such as EAF slag, coke oven dust, life terminated acidic refractory, aluminium dross and scrap by smelting reduction process.

  • PDF