• Title/Summary/Keyword: recycled powder

Search Result 299, Processing Time 0.025 seconds

Density and Water Absorption Characteristics of Artificial Lightweight Aggregates containing Stone-Dust and Bottom Ash Using Different Flux (폐석분 및 바텀애시를 사용한 인공경량골재의 융제(Flux) 종류에 따른 밀도 및 흡수율 특성)

  • Han, Min-Cheol;Shin, Jae-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.49-55
    • /
    • 2012
  • In this paper, the physical properties of lightweight aggregate such as density and water absorption according to addition ratio and type of flux were investigated. When using $Na_2CO_3$ as flux of lightweight aggregate, burnability was available at low burning temperature and water absorption increased. And as increasing addition ratio of $CaCO_3$, NaOH, $Fe_2O_3$, absorption decreased and $CaCO_3$, NaOH, $Fe_2O_3$ were considered improper to use flux of lightweight aggregate because of high dried density. $Na_2SO_4$ was proper to use flux of lightweight aggregate due to dried density $1.35{\sim}1.50g/cm^3$ and lower absorption. When using glass abrasive sludge as flux of lightweight aggregate, dried density and water absorption were in the range of $1.45{\sim}1.55g/cm^3$ and 9~12% respectively. It was indicated that as increasing addition ratio of blast furnace slag powder, density increased whereas absorption decreased. In use of oxidizing slag as flux, artificial lightweight aggregate which have dried density $1.46g/cm^3$, water absorption 8,5 % can be manufactured at 10 % of addition ratio.

  • PDF

Effect of Foaming Agent Content on the Apparent Density and Compressive Strength of Lightweight Geopolymers (발포제 함량에 따른 경량 다공성 지오폴리머의 밀도와 강도 특성)

  • Lee, Sujeong;An, Eung-Mo;Cho, Young-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Lightweight geopolymers are more readily produced and give higher fire resistant performance than foam cement concrete. Lowering the density of solid geopolymers can be achieved by inducing chemical reactions that entrain gases to foam the geopolymer structure. This paper reports on the effects of adding different concentrations of aluminum powder on the properties of cellular structured geopolymers. The apparent density of lightweight geopolymers has a range from 0.7 to $1.2g/m^3$ with 0.025, 0.05 and 0.10 wt% of a foaming agent concentration, which corresponds to about 37~60 % of the apparent density, $1.96g/cm^3$, of solid geopolymers. The compressive strength of cellular structured geopolymers decreased to 6~18 % of the compressive strength, 45 MPa of solid geopolymers. The microstructure of geopolymers gel was equivalent for both solid and cellular structured geopolymers. The workability of geopolymers with polyprophylene fibers needs to be improved as in fiber-reinforced cement concrete. The lightweight geopolymers could be used as indoor wall tile or board due to fire resistance and incombustibility of geopolymers.

Characteristics of Mine Liner According to the Replacement Ratio of Nano-Silica and Silica-Fume (나노실리카 및 실리카흄 대체율에 따른 차수재의 특성)

  • Kang, Suk-Pyo;Lee, Hee-Ra;Kang, Hye-Ju;Nam, Seong-Young;Kim, Chun-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.66-73
    • /
    • 2019
  • Approximately 80% of the mines are vacated or abandoned mines and are mostly left without suitable environmental treatment facilities. In the area around the abandoned mine site, problems such as drainage of acidic city drainage and leakage of leachate occur, and ground subsidence caused by this can cause a safety accident due to sink hole occurrence. In this study, flow, compressive strength, water uptake, pore and hydration characteristics were investigated to investigate the basic properties of liner and cover material based on the replacement ratio of nano silica and silica fume in the existing blast - furnace slag fine powder. As a result, as the substitution ratio of nano silica and silica fume increased, the flow and compressive strength of nano silica specimens increased and the absorption rate decreased. In the case of pore characteristics, the amount of pores decreased as the substitution ratio of nano silica and silica fume increased. Especially, the capillary porosity of 10-1,000 nm diameter decreased. Ray diffraction analysis and SEM measurement showed that the peak positions of the hydration products were almost the same when compared with the 5% alternative test samples of Plain and silica fume.

Evaluation Method of Healing Performance of Self-Healing Materials Based on Equivalent Crack Width (등가균열폭에 기반한 자기치유 재료의 치유성능 평가 방법)

  • Lee, Woong-Jong;Kim, Hyung-Suk;Choi, Sung;Park, Byung-Sun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.383-388
    • /
    • 2021
  • In this study, constant head water permeability test was adopted to evaluate self-healing performance of mortars containing inorganic healing materials which consist of blast furnace slag, sodium sulfate and anhydrite. Clinker powder and sand replaced for a part of cement and fine aggregates. On constant head water permeability test for self-healing mortars, unit water flow rate of mortar specimens were measured according to crack width and healing period. As a result of evaluating the healing performance of self-healing mortar, it was confirmed that with the initial crack width of 0.3mm, the healing rate at healing period of 28 days increased by more than 30%p compared to plain mortar, greatly improving the healing performance. Furthermore, the coefficient(α) which was estimated from the relationship between crack width and unit water flow rate was used for calculating equivalent crack width. By analyzing the correlation of healing rate and equivalent crack width, the time and initial crack width attaining healing target crack width were predicted.

Investigation on the Self-Healing Performance of Cement Mortar Incorporating Inorganic Expansive Additives (무기질계 팽창재가 포함된 시멘트 모르타르의 자기치유성능에 관한 연구)

  • Shin, Jin-Wook;Her, Sung-Wun;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.404-412
    • /
    • 2020
  • Herein, the properties and self-healing performance of cement mortar incorporating calcium sulfoaluminate(CSA), crystalline admixture(CA), and magnesium oxide(MgO) were investigated. Mortar strength test and water permeability experiments were conducted to analyze self-healing performance of the mortar. Also, variation in crack width were measured via digital optical microscope observation. The hydration products formed in the crack via self-healing were analyzed using x-ray diffraction(XRD), thermogravimetry(TG), and digital optical microscope. The analysis revealed that compressive strength and tensile strength increased as CA substitutional ratio increased. However, in the case of MgO replacement, the compressive strength and tensile strength decreased as the CA substitution ratio increased. The products in the recovered cracks are found to be mostly Ca(OH)2, MgCO3, and CaCO3. CaCO3 was shown to be the main healing product and had a higher portion than Ca(OH)2 and MgCO3 in the recovery products. Moreover, the optimal mix derived via water permeability and crack width results was 8% CSA + 1% CA + 2.5% MgO.

Study on the Modification Effect of Lightweight Aggregate using Blast Furnace Slag (고로슬래그 미분말을 이용한 경량골재의 표면개질 효과에 관한 연구)

  • Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.111-116
    • /
    • 2022
  • Recently, building structures tend to be super high-rise and large-scale with the development of concrete technology. When high-rise building is constructed of reinforced concrete structure, it has a disadvantage that its own weight increases. Light weight aggregate(LWA) was developed to compensate for these shortcomings. Manufacturing concrete using these light weight aggregates has the advantage of reducing the self weight of the reinforced concrete structure, but has a disadvantage in that the strength of the concrete is reduced. In this study, an experimental study was conducted to investigate the strength characteristics of hardened cement according to the presence or absence of surface coating of lightweight aggregates. As a result, in terms of compressive strength, the surface-coated lightweight aggregate exhibited higher strength than the uncoated lightweight aggregate. Also, it was considered that this is because the interfacial voids of the surface coated lightweight aggregate mixed cement hardened body were filled with blast furnace slag fine powder particles.

Application of Silicon Sludge from Semiconductor Manufacturing Process as Pigments and Paints through Titanium Dioxide Coating (반도체 제조공정에서 발생하는 실리콘 슬러지의 이산화티타늄 코팅을 통한 안료 및 도료 소재로의 응용)

  • Yeon-Ryong Chu;Minki Sa;Jiwon Kim;Suk Jekal;Chan-Gyo Kim;Ha-Yeong Kim;Song Lee;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • In this study, silicon sludge generated in semiconductor manufacturing process is recycled and applied as materials for pigments and paints. In detail, metallic impurities are removed from silicon sludge to obtain plate-like silicon sludge powder (SW-sludge), which is then coated with titanium dioxide via sol-gel method (TCS-sludge). SW-sludge and TCS-sludge are dispersed in hydrophilic transparent varnish and sprayed onto glass substrates to observe the possibility for the application as materials for pigments and paints. Notably, the applicability of TCS-sludge-based paint is improved compared to SW-sludge-based paint after the titanium dioxide coating. Moreover, the color of TCS-sludge-based paint turns into white. Accordingly, it is confirmed that the applicability and hydrophilicity are improved by the presence of outer titanium dioxide layer. In this regard, it is expected that the recycled TCS-sludge may be a future material for the application as pigments and paints.

A Effect of Chemical Composition and Replacement Ratio of Limestone Admixture on Initial Cement Characteristics (석회석 혼합재의 화학성분과 치환량이 시멘트 초기 물성에 미치는 영향)

  • Dong-Kyun Suh;Gyu-Yong Kim;Jae-Won Choi;Kyung-Suk Kim;Ji-Wan Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.440-448
    • /
    • 2023
  • Utilizing admixture, which is one of the raw material replacement method in the cement industry, is expected to be easily and quickly put to practical use as it is relatively more accessible than other methods. Among cement admixtures, limestone powder is reported to be able to improve cement performance through nucleation effects, chemical effects, and filler effects, so it is a material expected to be suitable as a cement admixture. Meanwhile, as high-quality limestone is depleted around the world, the use of limestone with clay or high magnesia (MgO) content is becoming increasingly inevitable. Therefore, in this study, we attempted to evaluate the suitability of limestone cement as a admixture by measuring the basic properties of limestone cement mixed with limestone of different qualities commonly used in Korea. As a result, the effect of alite reaction promotion was confirmed regardless of the chemical composition of the limestone binder. However, the dilution effect depending on the substitution amount was greater than the chemical composition. It is believed that normal-grade limestone can be used as a mixture as long as the limestone content in cement is within 15 % in this scope of study. In the future, we plan to evaluate the impact of the chemical composition of the limestone mixture through additional experiments depending on the chemical composition of cement.

Effect of Bio-Sulfur Modified by Slaked Lime on Cement Hydration Properties (소석회에 의해 개질된 바이오 황이 시멘트 수화 특성에 미치는 영향)

  • Woong-Geol Lee;Lae-Bong Han;Sung-Hyun Cho;Pyeong-Su Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.509-516
    • /
    • 2023
  • The use of sulfur(S) in concrete has been variously studied as a way to improve salt resistance in concrete. However, sulfur is a solid material and is difficult to powder, which has disadvantages in its usability as an admixture or mixture for cement and concrete. For these problem, polymers such as dicyclopentadiene have been used to modify sulfur, but this also exists in a sticky state after modifying and does not improve the fundamental problem. So, reforming sulfur with slaked lime and the effect on cement hydration was examined by reforming sulfur with slaked lime, and the following conclusions were obtained. Depending on the reaction conditions, slaked lime modified bio-sulfur exists in a slurry state containing unreacted sulfur, unreacted slaked lime, calcium-sulfur(Ca-S) compounds and water. When slaked lime modified bio-sulfur is used as a cement mixture, salt resistance of concrete with slaked lime modified bio-sulfur is to be superior to that of plain concrete. This is believed to be because structure of cement hydrates with slaked lime modified bio-sulfur is to be more dense to that of plain cement hydrates by the continued presence of ettringite and can be used as a cement mixture in concrete.

Development and Research of MMA Waterproof Coating and Waterproof System for Concrete Civil Structures (콘크리트 토목구조물 교면용 MMA 도막방수재 및 교면방수 시스템의 개발 연구)

  • Chul-Woo Lim;Sang-Ho Ji;Ki-Won An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 2024
  • Asphalt-based waterproofing materials for bridge decks face issues such as softening or liquefaction of the material during the process of pouring hot asphalt concrete on top of the waterproofing layer. This leads to instability and reduced thickness of the waterproofing layer. To address these problems, new solutions beyond the existing materials, including the development and adoption of new materials, are required. Therefore, this study investigates the properties of MMA(Methyl Methacrylate) coating waterproofing material, which meets the basic physical properties for bridge deck waterproofing. We examined the overall quality standards in a system where the substrate concrete, waterproofing material, and paving layer are integrated. The study confirmed the applicability of MMA coating waterproofing material on bridge decks. The results indicate that a stable application of MMA coating waterproofing material for civil engineering structures' bridge decks can be achieved with a mix ratio of hard MMA resin : soft MMA resin : powder = 6 : 34 : 60. Additionally, when using emulsified asphalt with hardening characteristics for the adhesion between the dissimilar materials of MMA waterproofing and asphalt concrete, it is expected to meet the minimum quality standards of the Ministry of Land, Infrastructure, and Transport's 'Guidelines for Asphalt Concrete Pavement Construction (2021.07)'.