DOI QR코드

DOI QR Code

Characteristics of Mine Liner According to the Replacement Ratio of Nano-Silica and Silica-Fume

나노실리카 및 실리카흄 대체율에 따른 차수재의 특성

  • Received : 2019.02.25
  • Accepted : 2019.03.12
  • Published : 2019.03.30

Abstract

Approximately 80% of the mines are vacated or abandoned mines and are mostly left without suitable environmental treatment facilities. In the area around the abandoned mine site, problems such as drainage of acidic city drainage and leakage of leachate occur, and ground subsidence caused by this can cause a safety accident due to sink hole occurrence. In this study, flow, compressive strength, water uptake, pore and hydration characteristics were investigated to investigate the basic properties of liner and cover material based on the replacement ratio of nano silica and silica fume in the existing blast - furnace slag fine powder. As a result, as the substitution ratio of nano silica and silica fume increased, the flow and compressive strength of nano silica specimens increased and the absorption rate decreased. In the case of pore characteristics, the amount of pores decreased as the substitution ratio of nano silica and silica fume increased. Especially, the capillary porosity of 10-1,000 nm diameter decreased. Ray diffraction analysis and SEM measurement showed that the peak positions of the hydration products were almost the same when compared with the 5% alternative test samples of Plain and silica fume.

광산의 약 80%가 휴광 또는 폐광된 광산으로 대부분 적절한 환경처리시설 없이 방치되어 있다. 폐광산 주변 지역은 산성광산 배수와 침출수 유출 등의 문제가 발생되고 있으며, 이로 인한 지반 침하는 싱크홀 발생으로 안전사고를 유발시킬 수 있다. 본 연구에서는 기존 고로슬래그 미분말 기반 광산 차수재의 나노 실리카 및 실리카흄 대체율 변화에 따른 차수재의 기초 특성을 검토하기 위해 플로우, 압축강도, 흡수율, 기공특성, 수화특성을 실시하였다. 그 결과 나노실리카 및 실리카흄의 대체율이 증가할수록 나노실리카의 시험체는 실리카흄의 시험체보다 플로우, 압축강도가 증가하고 흡수율은 감소하였다. 기공특성의 경우 나노실리카 및 실리카흄 대체율이 증가할수록 기공량이 감소하는 것으로 나타났으며 특히 직경 10~1,000nm의 모세관 기공량이 감소하는 것으로 나타났다. 선 회절분석 및 SEM 측정은 Plain과 실리카흄 5% 대체 시험체와 비교할 경우 수화생성물의 피크 위치가 거의 동일하게 나타났다. 나노실리카 및 실리카흄의 사용은 광산 차수재의 수밀성 향상이 가능할 것으로 판단되며 경제성을 고려하여 적절히 사용한다면 광산 차수재의 재료로서 활용 가능할 것으로 판단된다.

Keywords

GSJHDK_2019_v7n1_66_f0001.png 이미지

Fig. 1. Manufacture process of nano-silica using sodium silicate

GSJHDK_2019_v7n1_66_f0002.png 이미지

Fig. 2. SEM of nano-silica manufactured from sodium silicate

GSJHDK_2019_v7n1_66_f0003.png 이미지

Fig. 3. Cumulative distribution of binder

GSJHDK_2019_v7n1_66_f0004.png 이미지

Fig. 4. Table flow

GSJHDK_2019_v7n1_66_f0005.png 이미지

Fig. 5. Compressive strength

GSJHDK_2019_v7n1_66_f0006.png 이미지

Fig. 6. Absorption ratio

GSJHDK_2019_v7n1_66_f0007.png 이미지

Fig. 7. Incremental intrusion fume

GSJHDK_2019_v7n1_66_f0008.png 이미지

Fig. 8. Incremental intrusion pore distribution nano

GSJHDK_2019_v7n1_66_f0009.png 이미지

Fig. 9. Incremental intrusion nano and fume

GSJHDK_2019_v7n1_66_f0010.png 이미지

Fig. 10. Cumulative intrusion nano and fume

GSJHDK_2019_v7n1_66_f0011.png 이미지

Fig. 11. Result analysis of X-ray diffraction

GSJHDK_2019_v7n1_66_f0012.png 이미지

Fig. 12. SEM images of cement paste

Table 1. Experimental plan and mix design

GSJHDK_2019_v7n1_66_t0001.png 이미지

Table 2. Physical properties and chemical composition of cement, Blast furnace slag

GSJHDK_2019_v7n1_66_t0002.png 이미지

Table 3. Properties of silica fume

GSJHDK_2019_v7n1_66_t0003.png 이미지

Table 4. Properties of nano silica(Sodium Silicate)

GSJHDK_2019_v7n1_66_t0004.png 이미지

References

  1. Choo, C.O., Kyung, G.C., Lee, J.G. (2007). Characteristics of the dalseong acid mine drainage and the role of schwertmannite, Journal of Engineering Geology, 17(2), 187-196.
  2. Oh, S.G. (2011). A Study on the Development of an Additive Material for Briquette and a Barrier Liner using Sludges of Coal Mine Drainages, Ph.D Thesis, University of Seoul, Korea [in Korean].
  3. Lee, D.Y. (2010). A Study on the Development of Barrier Liner Material with Sludge in Coal Mine Drainage, Master's Thesis, University of Seoul, Korea [in Korean].
  4. Chang, Y.C., Kim, J.C., Jeong, O.K. (2007). Experimental study on engineering characteristic of the waste landfill soil admixed linear, Journal of the Korean Geoenironmental Society, 8(1), 13-20.
  5. Cho, Y.K., Nam, S.Y., Lee, Y.M., Kim, C.S., Seo, S.S., Jo, S.H., Lee, H.W., Ahn, J.W. (2018). Study on the haracteristic of liner and cover material by accelerating agent type, Journal of Environmental Science International, 27(2), 75-81. https://doi.org/10.5322/JESI.2018.27.2.75
  6. Seo, J.M. (2005). Optimization of Mix Proportions of High-Performance Concrete for Bridge Deck Overlay, Master's Thesis, Konkuk University, Korea [in Korean].
  7. Lee, J.G. (2013). Effect of Nano Silica and Silica Fume Content on the Bond Performance of Macro Synthetic Fiber in Concrete, Master's Thesis, Kongju National University, Korea [in Korean].
  8. Ryu, G.S., Koh. K.T., Lee, J.H. (2013). Strength development and durability of geopolymer mortar using the combined fly ash and blast-furnace slag, Journal of the Korean Recycled Construction Resources Institute, 1(1), 35-41. https://doi.org/10.14190/JRCR.2013.1.1.035
  9. Kang, S.P. (2015). Rebar corrosion evaluation of cement mixed nano-silica based sodium silicate, Journal of Construction and Environment Research, Chungwoon University, 10(1), 177-184.
  10. Gwak, G.D. (2004). A Study on Fire-Resistant Performance of Concrete using Nano-Silica Particles, Master's Thesis, Hanyang University, Korea [in Korean].