• Title/Summary/Keyword: recycled plastic waste

Search Result 83, Processing Time 0.029 seconds

Pilot Scale Anaerobic Digestion of Korean Food Waste (파일로트 규모 음식쓰레기 2상 혐기소화 처리공정에 관한 연구)

  • Lee, J.P.;Lee, J.S.;Park, S.C.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.197-203
    • /
    • 1998
  • A 5 ton/day pilot scale two-phase anaerobic digester was constructed and tasted to treat Korean food wastes in Anyang city. The process was developed based on 3 years of lab-scale experimental results on am optimim treatment method for the recovery of biogas and humus. Problems related to food waste are ever Increasing quantity among municipal solid wastes(MSW) and high moisture and salt contents. Thus our food waste produces large amounts of leachate and bed odor in landfill sites which are being exhausted. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert material such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 days space time at pH of about 6.5. The second, methanization reactor part of which is filled with anaerobic fillters, converted the acids into methane with pH between 7.4 to 7.8. The space time for the second reactor was 15 days. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady state operation with the maximum organic rate of 7.9 $kgVS/m^3day$ and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about $230m^3$ of biogas with 70% of methane and 80kg humus. This process is extended to full scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  • PDF

Production of 3D Printer Filament Using Exfoliated Graphene and Recycled PP Composite and Their Application to 3D Printing (재활용 PP와 박리 그래핀을 이용한 3D 프린터용 원사의 제조 및 3D 프린터를 이용한 성형)

  • Lee, Jaeyu;Lee, Jea Uk;Lee, Kyung Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.157-162
    • /
    • 2021
  • In this study, 3D printing filaments using recycled polypropylene (rPP) were produced by a single screw extruder. Graphene composite filament was also prepared using electrochemically exfoliated graphene (EEG) as a composite filler by adding 10, and 20 wt% of EEG to rPP. The graphene and rPP were successfully dispersed with great homogeneity, so that 3D filaments were uniformly produced, and their thermal properties increased as the graphene content increased. The mechanical property was also improved when EEG was 10 wt% but decreased when EEG was 20 wt% compared to that of rPP. 3D structures were successfully manufactured using prepared 3D filaments by a conventional 3D printer, and great advantages can be expected in terms of environmental and economical perspective by adopting plastic waste.

Developing Advanced Total Recycling Method of FRP Boats (FRP선박의 일괄 재처리 방법의 개선)

  • Lee, Seung Hee;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Since 1990s, the major recycling methods for mechanical recycling of FRP(Fiber Reinforced Plastics)boats has involved shredding and grinding of the scrap FRP in a new recycled product. But still it leads to secondary problem such as air pollution, unacceptable shredding noise level and few limited applications. This study is to propose a newly advanced method which is more efficient and environment friendly waste FRP regenerating system. As extracting FRP layer and making the recycled fiber for recycled-fiber reinforced concrete(RFRC) from waste FRP, the recycling process has some merits in a sense of the recycling energy and the environmental effects. In this study, for those tasks, spectro-chemical differentiation method and coloring water-soluble dye treatment makes the roving layer more distinguishable photophysically. Also that has remarkably reduced safety hazards and energy. Using the mechanical properties of polymers and composite, FRP with the orthotropic and laminated plastic structure has been easily separated in the new extracting system. Also the new method has introduced five kind of separating manuals for the some different compositions of FRP boats. The roving fiber of laminated glass-fiber layer is as good as the polyvinyl fiber which is cost-high commercial fiber to increasing strength of concrete products. The early study has shown the effectiveness of laminated glass-fiber layer which also is chemical-resistant due to the resin coating. These results imply that more efficient and environment friendly recycled glass fiber can be better applied to the fiber reinforced concrete(FRC) substitute and this study also has shown wide concrete applications with RFRC from the waste FRP boat.

Effects of PE (Polyethylene) and GF (Glass Fiber) Addition on Tensile Strength and Elongation of ABS (Acrylonitrile Butadiene Styrene) Recovered from Waste LCDs (폐(廢)LCD에서 회수(回收)된 ABS(Acrylonitrile Butadiene Styrene)의 인장강도(引張强度)와 연신율(延伸率)에 미치는 PE(Polyethylene)와 유리섬유(纖維)(Glass Fiber) 첨가효과(添加效果))

  • Lee, Sungkyu;Cho, Sung-Su;Lee, Soo-Young;Park, Jae Layng;Hong, Myung Hwan;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.50-56
    • /
    • 2013
  • Recycled plastic composites of ABS/PE (50/50 and 20/80) and ABS/GF (90/10) were fabricated from plastic components of waste LCDs and effects of PE composition on elongation of ABS/PE composites were investigated. Increased PE contents improved elongation of the composite from 2.4% to 13%, which was attributed to increased crystalline behavior of the ABS/PE composite afforded by ductile PE fraction: SEM fractographs showed some sign of plastic deformation of PE matrix before ductile fracture of the composites.

Development and Commercialization of Artificial Reefs from Waste Mulch Plastic Films (농업용(農業用) 멀칭 폐(廢)비닐로부터 인공어초(人工魚礁) 개발(開發) 및 상용화(商用化))

  • Kim, Hea-Tae;Shon, Sang-Jin;Kim, Myoung-Ho;Choi, Mi-Ran;Baek, Wook-Jin
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.19-24
    • /
    • 2007
  • Reefs are the marine structure that can give resting, inhabiting, feeding and nursing spaces for a variety of fishes. Usually artificial reefs are made of cement and steels respectively in Japan as well as in Korea. However since resources deficiency has been getting serious, other materials are taken into consideration for the basic bodies of artificial reefs. About 300 thousand tons of waste agricultural plastic films are generated every yew in Korea, but no effective recycling techniques have been developed. In this sense, artificial reefs made of waste agricultural plastic films are the most representative symbol of the recycled products in the Resource Recycling Era. In particular, since these reefs could be made of the semi-cleaned waste agricultural plastic films that still contain high portion of soil, it is very environmentally friendly not only in manufacturing process but also in using under water. Furthermore they have some evident advantages as follows; 1) high fish swarming effect 2) good initial attachment of the marine growths 3) extremely low corrosion to brine 4) easy adjustment of the gravity 5) economical manufacture, transportation and jettison 6) excellent safety to ecosystem caused by lower elution of toxic substances 7) good recyclable property after application and so on.

Formaldehyde Release from Medium Density Fiberboard in Simulated Landfills for Recycling

  • Lee, Min;Prewitt, Lynn;Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.597-604
    • /
    • 2014
  • Laboratory-scale landfills (simulated landfills) were designed to determine the formaldehyde released into air and leachate from medium density fiberboard (MDF). Simulated landfills were constructed using cylindrical plastic containers containing alternating layers of soil and MDF for a total of five layers. The highest concentration of formaldehyde was found in the air and leachate from the MDF only treatment compared to treatments containing MDF and soil. At the end of the study (28 days), formaldehyde concentrations in air and leachate from treatments containing MDF and soil decreased by 70 percent and 99 percent, respectively, while the treatment containing MDF only still released formaldehyde into the air and leachate. Therefore, waste MDF after storing 4 weeks in water may be recycled as compost or mulch based on formaldehyde leaching. Also, these data indicate soil restricts formaldehyde release into air and leachate and provides new information about the fate of wood-based composite waste containing UF resin disposed in landfills.

Methods of Separating Used Plastics for Recycling (폐플라스틱의 선별기술)

  • 윤여환
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Plastics waste constitutes approximately 23% by volume of the municipal solid waste(MSW) generated in the U.S. each year, and have slow rate of degradation in the environment. Therefore, there is a great deal of public pressure to recycle plastics, and more than 100 million people participate in the curbside recycling programs. Despite the high level of public interest, only 3.5% of the plastic are recycled, which is substantially lower than the recycle rates of other materials such as paper fibers, glass, and iron. Although a large part of the reason is due to the low price of virgin polymers, which in turn is due to the low price of oil, it is possible to make the plastics recycling as a profitable business by developing advanced technologies. In this communication, various methods of separating pplastics from metals and from each other are discussed.

  • PDF

Current Status of Plastic Recycling in Korea (국내 플라스틱 리싸이클링 현황)

  • Lee, Sang-hun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.3-8
    • /
    • 2019
  • Recently, plastic waste in Korea has been recognized as a critical issue due to an increase in massive production of plastics, difficulty in disposal of waste plastics, and public recognition of toxicity in micro-plastics, etc. To resolve those problems, the regulation to reduce plastics consumption may be primarily considered but, in this case, clarification should be made on the rationales and the action plans in the regulation for individual waste plastic items. Another problem is the small capital sizes of domestic recycling companies, which leads to poor R&D capacity, low recycling yields and thus lowering values of recycling items. This adversely affects consumers' perception. The R&D toward recycling technical progress should take into account the environmental friendliness and recyclability from the early product design stages. Certainly, this should be supported in governmental policy and public action plans. In addition, by referring to advanced policies of i.e. European Union, the recycling industry should be recognized as an opportunity toward new investment & employment. If necessary, the regulation of plastic consumption through a formal evaluation process such as Life Cycle Assessment (LCA) will also be helpful. The values of recycled plastics should be improved through the identification and elimination of harmful chemical substances potentially contained in the products.

A Study on the Safety of Food Packaging Materials from the Perspective of the Circular Economy (순환경제 관점에서 본 플라스틱 식품포장재 재활용의 안전성에 관한 고찰)

  • 김미경
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.149-158
    • /
    • 2021
  • Advances in food packaging play an important role in keeping food manufacturing and food supply safe. Food packaging facilitates the storage, handling, transportation and preservation of food, and also contributes to the minimization of food waste. On the other hand, food packaging materials have high production volumes, short usage times, and accelerate the occurrence of environmental problems related to waste. The circular economy has already been introduced to pursue sustainability through resource conservation and recycling, and to reduce waste and carbon emissions. By activating an eco-friendly economic system that minimizes resource depletion and environmental pollution, reducing, reusing, recycling and redesigning the goals of the circular economy will reduce the impact of food packaging on the environment. This review focused on the safety aspects of recycled food packaging as recycling is currently considered an important means of packaging waste management. Assessing the safety of recycled packaging is very important because recycling can increase the levels of potentially hazardous chemicals in packaging and in the food after they are migrated. Various food packaging materials such as plastic, paper and cardboard, aluminum, steel, and multi-material multi-layers packaging are commonly used, but only the recycling safety of plastic food packaging materials, which is the most used and has a significant increase in post-use problem, is discussed in this review.

A Feasibility Study of Wood-plastic Composite Paver Block for Basic Rest Areas

  • Yang, Sungchul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.51-65
    • /
    • 2019
  • A wood-plastic composite (WPC) paver block was manufactured using wood chips waste through an extrusion process, and it was intended to be used for paving in basic rest areas. The first stage in this study covered preliminary tests in terms of flexural strength and dimensional swelling to determine the optimal WPC compounding mix condition, by variation of the WPC ingredients. Next, three different paver blocks including the WPC block, a non-porous cement block, and a porous cement block were tested in terms of various material properties in the laboratory. Finally, two outdoor test sections of the proposed paver blocks were prepared to simulate a basic rest area. Test results indicated that the flexural strength of the WPC paver blocks was about 1.6 times greater than that of the tested cement paver blocks. The WPC block pavement was unaffected by water buoyance as well as volume expansion due to swelling. Results from the impact absorbance test and light falling weight deflectometer (LFWD) test clearly showed that the WPC block paving system marginally satisfied the comfortable and safe hardness range from the pedestrians' perspective, while the results demonstrated that it is structurally sound for application as a road paving block.