References
- I. Hager, A. Golonka, and R. Putanowicz, 3D printing of buildings and building components as the future of sustainable construction?, Procedia Eng., 151, 292-299 (2016). https://doi.org/10.1016/j.proeng.2016.07.357
- N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir, 3D Printing of personalized thick and perfusable cardiac patches and hearts, Adv. Sci., 6, 1900344 (2019). https://doi.org/10.1002/advs.201900344
- M. S. Mannoor, Z. Jiang, T. James, Y. L. Kong, K. A. Malatesta, W. O. Soboyejo, N. Verma, D. H. Gracias, and M. C. McAlpine, 3D printed bionic ears, Nano Lett., 13, 2634-2639 (2013). https://doi.org/10.1021/nl4007744
- J. Sun, W. Zhou, D. Huang, J. Y. H. Fuh, and G. S. Hong, An overview of 3D printing technologies for food fabrication, Food Bioprocess Technol., 8, 1605-1615 (2015). https://doi.org/10.1007/s11947-015-1528-6
- A. Ambrosi and M. Pumera, 3D-printing technologies for electrochemical applications, Chem. Soc. Rev., 45, 2740-2755 (2016). https://doi.org/10.1039/c5cs00714c
- X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, 3D printing of polymer matrix composites: A review and prospective, Compos. B Eng., 110, 442-458 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034
- T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. B Eng., 143, 172-196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012
- J. R. C. Dizon, A. H. Espera Jr, Q. Chen, and R. C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf., 20, 44-67 (2018).
- G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling, Compos. A Appl. Sci. Manuf., 76, 110-114 (2015). https://doi.org/10.1016/j.compositesa.2015.05.014
- H. Jeon, Y. Kim, W.-R. Yu, and J. U. Lee, Exfoliated graphene-thermoplastic elastomer nanocomposites with improved wear properties for 3D printing, Compos. B Eng., 189, 107912 (2020). https://doi.org/10.1016/j.compositesb.2020.107912
- M. Nikzad, S. H. Masood, and I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling, Mater. Des., 32, 3448-3456 (2011). https://doi.org/10.1016/j.matdes.2011.01.056
- S. Hwang, E. L. Reyes, K.-S. Moon, R. C. Rumpf, and N. S. Kim, Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process, J. Electron. Mater., 44, 771-777 (2015). https://doi.org/10.1007/s11664-014-3425-6
- E. Fantino, A. Chiappone, F. Calignano, M. Fontana, F. Pirri, and I. Roppolo, In situ thermal generation of silver nanoparticles in 3D printed polymeric structures, Materials, 9, 589 (2016). https://doi.org/10.3390/ma9070589
- A. E. Jakus, E. B. Secor, A. L. Rutz, S. W. Jordan, M. C. Hersam, and R. N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications, ACS Nano, 9, 4636-4648 (2015). https://doi.org/10.1021/acsnano.5b01179
- E. Jabari, F. Liravi, E. Davoodi, L. Lin, and E. Toyserkani, High speed 3D material-jetting additive manufacturing of viscous graphene-based ink with high electrical conductivity, Addit. Manuf., 35, 101330 (2020). https://doi.org/10.1016/j.addma.2020.101330
- P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties, Polymer, 52, 4001-4010 (2011). https://doi.org/10.1016/j.polymer.2011.06.045
- J. Bae, Chemical sensors using polymer/graphene composite and the effect of graphene content on sensor behavior, Appl. Chem. Eng., 31, 1, 25-29 (2020).
- S. Hertle, M. Drexler, and D. Drummer, Additive manufacturing of poly(propylene) by means of melt extrusion, Macromol. Mater. Eng., 301, 1482-1493 (2016). https://doi.org/10.1002/mame.201600259
- L. Lei, Z. Yao, J. Zhou, B. Wei, and H. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance, Compos. Sci. Technol., 200, 108479 (2020). https://doi.org/10.1016/j.compscitech.2020.108479
- M. Dong, S. Zhang, D. Gao, and B. Chou, The study on polypropylene applied in fused deposition modeling, AIP Conf. Proc., 2065, 030059 (2019).
- O. S. Carneiro, A. F. Silva, and R. Gomes, Fused deposition modeling with polypropylene, Mater. Des., 83, 768-776 (2015). https://doi.org/10.1016/j.matdes.2015.06.053
- Y. L. Zhong, Z. Tian, G. P. Simon and D. Li, Scalable production of graphene via wet chemistry: Progress and challenges, Mater. Today, 18, 2, 73-78 (2014). https://doi.org/10.1016/j.mattod.2014.08.019
- M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9, 1726-1291 (2007).
- H. Guo, R. Lv, and S. Bai, Recent advances on 3D printing graphene-based composites, Nano Mater. Sci., 1, 101-115 (2019). https://doi.org/10.1016/j.nanoms.2019.03.003
- X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, and Z. Sun, 3D printable graphene composite, Sci. Rep., 5, 11181 (2015). https://doi.org/10.1038/srep11181
- S. Sayyar, M. Bjorninen, S. Haimi, S. Miettinen, K. Gilmore, D. Grijpma, and G. Wallace, UV cross-linkable graphene/poly(trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds, ACS Appl. Mater. Interfaces, 8, 31916-31925 (2016). https://doi.org/10.1021/acsami.6b09962
- F. A. Hoor, J. Morshedian, S. Ahmadi, M. Rakhshanfar, and A. Bahramzadeh, Effect of graphene nanosheets on the morphology, crystallinity, and the thermal and electrical properties of super tough polyamide 6 using SEBS compounds, J. Chem., 1, 1-6 (2015).
- S. Waheed, J. M. Cabot, P. Smejkal, S. Farajikhah, S. Sayyar, P. C. Innis, S. Beirne, G. Barnsley, T. W. Lewis, M. C. Breadmore, and B. Paull, Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer, ACS Appl. Mater. Interfaces, 11, 4353-4363 (2019). https://doi.org/10.1021/acsami.8b18232