Browse > Article
http://dx.doi.org/10.14478/ace.2021.1009

Production of 3D Printer Filament Using Exfoliated Graphene and Recycled PP Composite and Their Application to 3D Printing  

Lee, Jaeyu (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Jea Uk (Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University)
Lee, Kyung Jin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.2, 2021 , pp. 157-162 More about this Journal
Abstract
In this study, 3D printing filaments using recycled polypropylene (rPP) were produced by a single screw extruder. Graphene composite filament was also prepared using electrochemically exfoliated graphene (EEG) as a composite filler by adding 10, and 20 wt% of EEG to rPP. The graphene and rPP were successfully dispersed with great homogeneity, so that 3D filaments were uniformly produced, and their thermal properties increased as the graphene content increased. The mechanical property was also improved when EEG was 10 wt% but decreased when EEG was 20 wt% compared to that of rPP. 3D structures were successfully manufactured using prepared 3D filaments by a conventional 3D printer, and great advantages can be expected in terms of environmental and economical perspective by adopting plastic waste.
Keywords
3D printing; Recycling plastic waste; Graphene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Waheed, J. M. Cabot, P. Smejkal, S. Farajikhah, S. Sayyar, P. C. Innis, S. Beirne, G. Barnsley, T. W. Lewis, M. C. Breadmore, and B. Paull, Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer, ACS Appl. Mater. Interfaces, 11, 4353-4363 (2019).   DOI
2 I. Hager, A. Golonka, and R. Putanowicz, 3D printing of buildings and building components as the future of sustainable construction?, Procedia Eng., 151, 292-299 (2016).   DOI
3 N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir, 3D Printing of personalized thick and perfusable cardiac patches and hearts, Adv. Sci., 6, 1900344 (2019).   DOI
4 M. S. Mannoor, Z. Jiang, T. James, Y. L. Kong, K. A. Malatesta, W. O. Soboyejo, N. Verma, D. H. Gracias, and M. C. McAlpine, 3D printed bionic ears, Nano Lett., 13, 2634-2639 (2013).   DOI
5 J. Sun, W. Zhou, D. Huang, J. Y. H. Fuh, and G. S. Hong, An overview of 3D printing technologies for food fabrication, Food Bioprocess Technol., 8, 1605-1615 (2015).   DOI
6 A. Ambrosi and M. Pumera, 3D-printing technologies for electrochemical applications, Chem. Soc. Rev., 45, 2740-2755 (2016).   DOI
7 X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, 3D printing of polymer matrix composites: A review and prospective, Compos. B Eng., 110, 442-458 (2017).   DOI
8 T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. B Eng., 143, 172-196 (2018).   DOI
9 J. R. C. Dizon, A. H. Espera Jr, Q. Chen, and R. C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf., 20, 44-67 (2018).
10 G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling, Compos. A Appl. Sci. Manuf., 76, 110-114 (2015).   DOI
11 H. Jeon, Y. Kim, W.-R. Yu, and J. U. Lee, Exfoliated graphene-thermoplastic elastomer nanocomposites with improved wear properties for 3D printing, Compos. B Eng., 189, 107912 (2020).   DOI
12 M. Nikzad, S. H. Masood, and I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling, Mater. Des., 32, 3448-3456 (2011).   DOI
13 S. Hwang, E. L. Reyes, K.-S. Moon, R. C. Rumpf, and N. S. Kim, Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process, J. Electron. Mater., 44, 771-777 (2015).   DOI
14 E. Fantino, A. Chiappone, F. Calignano, M. Fontana, F. Pirri, and I. Roppolo, In situ thermal generation of silver nanoparticles in 3D printed polymeric structures, Materials, 9, 589 (2016).   DOI
15 A. E. Jakus, E. B. Secor, A. L. Rutz, S. W. Jordan, M. C. Hersam, and R. N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications, ACS Nano, 9, 4636-4648 (2015).   DOI
16 E. Jabari, F. Liravi, E. Davoodi, L. Lin, and E. Toyserkani, High speed 3D material-jetting additive manufacturing of viscous graphene-based ink with high electrical conductivity, Addit. Manuf., 35, 101330 (2020).   DOI
17 L. Lei, Z. Yao, J. Zhou, B. Wei, and H. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance, Compos. Sci. Technol., 200, 108479 (2020).   DOI
18 P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties, Polymer, 52, 4001-4010 (2011).   DOI
19 J. Bae, Chemical sensors using polymer/graphene composite and the effect of graphene content on sensor behavior, Appl. Chem. Eng., 31, 1, 25-29 (2020).
20 S. Hertle, M. Drexler, and D. Drummer, Additive manufacturing of poly(propylene) by means of melt extrusion, Macromol. Mater. Eng., 301, 1482-1493 (2016).   DOI
21 M. Dong, S. Zhang, D. Gao, and B. Chou, The study on polypropylene applied in fused deposition modeling, AIP Conf. Proc., 2065, 030059 (2019).
22 O. S. Carneiro, A. F. Silva, and R. Gomes, Fused deposition modeling with polypropylene, Mater. Des., 83, 768-776 (2015).   DOI
23 Y. L. Zhong, Z. Tian, G. P. Simon and D. Li, Scalable production of graphene via wet chemistry: Progress and challenges, Mater. Today, 18, 2, 73-78 (2014).   DOI
24 M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9, 1726-1291 (2007).
25 F. A. Hoor, J. Morshedian, S. Ahmadi, M. Rakhshanfar, and A. Bahramzadeh, Effect of graphene nanosheets on the morphology, crystallinity, and the thermal and electrical properties of super tough polyamide 6 using SEBS compounds, J. Chem., 1, 1-6 (2015).
26 H. Guo, R. Lv, and S. Bai, Recent advances on 3D printing graphene-based composites, Nano Mater. Sci., 1, 101-115 (2019).   DOI
27 X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, and Z. Sun, 3D printable graphene composite, Sci. Rep., 5, 11181 (2015).   DOI
28 S. Sayyar, M. Bjorninen, S. Haimi, S. Miettinen, K. Gilmore, D. Grijpma, and G. Wallace, UV cross-linkable graphene/poly(trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds, ACS Appl. Mater. Interfaces, 8, 31916-31925 (2016).   DOI