• Title/Summary/Keyword: recursive subspace algorithm

Search Result 8, Processing Time 0.023 seconds

A novel recursive stochastic subspace identification algorithm with its application in long-term structural health monitoring of office buildings

  • Wu, Wen-Hwa;Jhou, Jhe-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.459-474
    • /
    • 2019
  • This study develops a novel recursive algorithm to significantly enhance the computation efficiency of a recently proposed stochastic subspace identification (SSI) methodology based on an alternative stabilization diagram. Exemplified by the measurements taken from the two investigated office buildings, it is first demonstrated that merely one sixth of computation time and one fifth of computer memory are required with the new recursive algorithm. Such a progress would enable the realization of on-line and almost real-time monitoring for these two steel framed structures. This recursive SSI algorithm is further applied to analyze 20 months of monitoring data and comprehensively assess the environmental effects. It is certified that the root-mean-square (RMS) response can be utilized as an excellent index to represent most of the environmental effects and its variation strongly correlates with that of the modal frequency. More detailed examination by comparing the monthly correlation coefficient discloses that larger variations in modal frequency induced by greater RMS responses would typically lead to a higher correlation.

Recursive State Space Model Identification Algorithms Using Subspace Extraction via Schur Complement

  • Takei, Yoshinori;Imai, Jun;Wada, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.525-525
    • /
    • 2000
  • In this paper, we present recursive algorithms for state space model identification using subspace extraction via Schur complement. It is shown that an estimate of the extended observability matrix can be obtained by subspace extraction via Schur complement. A relationship between the least squares residual and the Schur complement matrix obtained from input-output data is shown, and the recursive algorithms for the subspace-based state-space model identification (4SID) methods are developed. We also proposed the above algorithm for an instrumental variable (IV) based 4SID method. Finally, a numerical example of the application of the algorithms is illustrated.

  • PDF

A Square-Root Forward Backward Correlation-based Projection Approximation for Subspace Tracking (신호부공간 추정 성능 향상을 위한 전후방 상관과 제곱근행렬 갱신을 이용한 COPAST(correlation-based projection approximation for subspace-tracking) 알고리즘 연구)

  • Lim, June-Seok;Pyeon, Yong-Kug
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.7-15
    • /
    • 2011
  • In this paper, we propose a correlation-based subspace estimation technique, which is called square-root forward/backward correlation-based projection approximation subspace tracking(SRFB-COPAST). The SRFB-COPAST utilizes the forward and backward correlation matrix as well as square-root recursive matrix update in projection approximation approach to develop the subspace tracking algorithm. With the projection approximation, the square-root recursive FB-COPAST is presented. The proposed algorithm has the better performance than the recently developed COPAST method.

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

Application of recursive SSA as data pre-processing filter for stochastic subspace identification

  • Loh, Chin-Hsiung;Liu, Yi-Cheng
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.

Structural Topology Optimization for the Natural Frequency of a Designated Mode

  • Lim, O-Kaung;Lee, Jin-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.306-313
    • /
    • 2000
  • The homogenization method and the density function method are common approaches to evaluate the equivalent material properties for design cells composed of matter and void. In this research, using a new topology optimization method based on the homogenized material with a penalty factor and the chessboard prevention strategy, we obtain the optimal layout of a structure for the natural frequency of a designated mode. The volume fraction of nodes of each finite element is chosen as the design variable and a total material usage constraint is imposed. In this paper, the subspace method is used to evaluate the eigenvalue and its corresponding eigenvector of the structure for the designated mode and the recursive quadratic programming algorithm, PLBA algorithm, is used to solve the topology optimization problem.

  • PDF

Mean Square Projection Error Gradient-based Variable Forgetting Factor FAPI Algorithm (평균 제곱 투영 오차의 기울기에 기반한 가변 망각 인자 FAPI 알고리즘)

  • Seo, YoungKwang;Shin, Jong-Woo;Seo, Won-Gi;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.177-187
    • /
    • 2014
  • This paper proposes a fast subspace tracking methods, which is called GVFF FAPI, based on FAPI (Fast Approximated Power Iteration) method and GVFF RLS (Gradient-based Variable Forgetting Factor Recursive Lease Squares). Since the conventional FAPI uses a constant forgetting factor for estimating covariance matrix of source signals, it has difficulty in applying to non-stationary environments such as continuously changing DOAs of source signals. To overcome the drawback of conventioanl FAPI method, the GVFF FAPI uses the gradient-based variable forgetting factor derived from an improved means square error (MSE) analysis of RLS. In order to achieve the decreased subspace error in non-stationary environments, the GVFF-FAPI algorithm used an improved forgetting factor updating equation that can produce a fast decreasing forgetting factor when the gradient is positive and a slowly increasing forgetting factor when the gradient is negative. Our numerical simulations show that GVFF-FAPI algorithm offers lower subspace error and RMSE (Root Mean Square Error) of tracked DOAs of source signals than conventional FAPI based MUSIC (MUltiple SIgnal Classification).

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.