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Abstract
In this paper, we propose a correlation-based subspace estimation technique, which is called square-root

forward/backward correlation-based projection approximation subspace tracking(SRFB-COPAST). The SRFB-COPAST
utilizes the forward and backward correlation matrix as well as square-root recursive matrix update in projection
approximation approach to develop the subspace tracking algorithm. With the projection approximation, the square-root
recursive FB-COPAST is presented. The proposed algorithm has the better performance than the recently developed

COPAST method.
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I. Introduction

In recent years, subspace-tracking algorithms have
been intensively studied and widely applied to reduce
the computational complexity of subspace estimation.
Instead of wupdating the whole eigen-structure,

subspace-tracking algorithm only works with the
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signal or noise subspace. This makes subspace—
tracking algorithm more efficient than conventional
methods using eigenvalue decomposition (ED) or
singular value decomposition (SVD). One of the
the
projection approximation subspace-tracking (PAST)
algorithmm. The idea of the PAST is to make the

expectation of the squared difference between the

attractive  subspace-tracking algorithms is

input vector and the projected vector minimum. With
proper projection approximation, the PAST derives a
recursive least squares (R LS) algorithm for tracking
the signal subspace. However, the PAST still has
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room for the improvement in the subspace estimation
accuracy. To improve the PAST algorithm, many
different algorithms have been proposed. For example,
Jung-Lang Yu develop ed a correlation-based
(CO
PAST), to improve the convergence property of the

projection approximation subspace tracking
subspace trackjngm and Gustafsson proposed an
instrumental variable based PAST to cope with the
colored noise case”. Lim proposed an algorithm to
control the estimation window size automatically to
handle time- varying signals[4].

In this paper, we propose a new algorithm to
improve the subspace estimation accuracy and the
stability in the COPAST
algorithm. The proposed algorithm utilizes the normal

in matrix inversion
forward ordered input vector and the reversal ordered
input vector simultaneously and also applies the
square-root algorithm to the update of inversion
matrix. The forward and backward input vectors can
build up the better sample covariance and the
square-root update can also improve the stability in
the inverse matrix, which plays a key role in
COPAST algorithm which is a kind of the overdeter-
mined recursive algorithm[5].

improved COPAST

subspace

we expect the
the better

Therefore,
algorithm  with

accuracy. The outline of the paper is as follows. In

estimation

Section II, the problem formulation is introduced and
the PAST algorithm. In Section III, the COPAST is
summarized and a new algorithm is derived based on
the square-root matrix update. Secion IV discusses
the property of covariance matrix and the estimated
covariance matrix. Then the square-root forward and
backward COPAST (SRFB- COPAST) algorithm is
derived. Section V
demonstrate that the FB-COPAST performs very

well. Finally, Section VI contains the conclusions.

shows simulation results to

II. PAST algorithm

Consider an M-element narrowband uniformly
linear array (ULA) illuminated by J signals. The

St COPAST (correlation—based projection approximation for subspace—tracking) &12|E ¢+ QUM 9|

input vector to the array sensors can be written as

J
(1) = Zsj(t)a(ﬁ )+ n(r)

J=1

oy

where, S.i(’), j==1,..., J represent the wave- forms

of the signals which are not fully correlated, a0)) is

the phase vector of the jth signal with 0; indicating
the arriving direction, and ™) is the spatially and

temporally uncorrelated background noise. The

correlation matrix of the input vector is

J
C = Elx()x" (z)]: Zafa(a 9l (0,)+ 021
j=1

2)

where E[e] denotes expectation, H denotes

complex conjugate transpose, 6/2' and Uf
represent the powers of the jth signal and noise,
respectively. With the assumption of J<AZ, the
correlation matrix C can be eigen decomposed as

M
C= Zﬁ.l-eie,ﬁ
i=1

3)

2 .
where 424 2A227,1=A =4y =0, are eig-

envalues in the descending order, and €, i=1,..,M,

are the corresponding orthonormal eigenvectors. The
eigenvectors €1 ,...,€7 span the subspace same as that
spanned by @1,..,3; which is called the signal

subspace. The remaining eigenvectors, €J+1,...,€um are
orthogonal to the signal subspace and span the noise

subspacemﬂ].

t
JOW@0) =D 7 k) - WOW@OX()|

(4)

i=1
PAST  (Projection  Approximation  Subspace
Tracking) algorithm is based on the minimum

property of the unconstrained cost function.
. . 7
where X(i) = [xu @ A xy (1)] is the input vector

and W) is a Nxr matrix represent- ing the signal



2011 38 MXISE3

subspace. To derive recursive update of W) from
W(-1) | Yang in [1] approximates W7 ()x() by the

expression ¥(®) =W (i=Dx()) which can be calculated

for 1 <i <t at the time instant . Then (1) results

in a modified cost function,

!
TW@) = D B kD) - Wy ) ()

i=1
This becomes the exponentially weighted least
squares cost function which is well studied in
adaptive filtering. 7' (W("))  is minimized if
W(1) = Cyy (1)Cyy (0),
t .
Cay (= B x(0y" (1) = BCyy =D+ x(0y" (1),

i=1

©)

!
Cyy =D B 7¥G)y" () = fCyy t=D)+y(OY" ().

i=1

II. Correlation—based PAST and its
square—root recursive Algorithm

Yu developed the COPAST algorithm in [2]. The
COPAST defines the cost function in terms of the

correlation matrix as follows

2
H
Cyx —WW'Cyy v

_ Tr{cxxcfjx —ow# CXXCXHXW} @)
H H H
+WHe clwwHw

J(W) =

where 7r{ « } denotes the trace of a matrix and
F indicates the Frobenius norm. Since the correlation
matrix is the second-order statistic of the input
vector, the input SNR seems to be square of that in
the PAST. Consequently, the COPAST using the
correlation matrix improves the performance of the
PAST. For convenience of finding the solution of (7),
the ensemble correlation matrix is replaced with the

exponentially weighted sum

C() =) B x)x" (i)
i=1

==X M 48 A IEEAN1TZ 9

Thus, the cost function becomes

JOVO) =|Cu 0 - WOW! 00 ©

Using the projection approximation concept and (8),
WH(ACxx(d  in(9),which termed  Cyx(0),

approximated to

is is

Cpu () =W C(0 2 Y AW i-1x()x" () (10)

i=1

Using (10), the criterion of (9) degenerates to a

quadratic optimization problem, and is minimized by

W) = Co (0C (0(C, (OCE () = Co (0T (1)
(11a)

where Cx()=ACx(t-D+xOx" (1) and * denotes
the Moore-Penrose pseudofinversem. The COPAST

algorithm is summarized in Table 1.

= 1

. COPAST &1z|& 2°9F

Table 1. Summary of COPAST Algorithm.
0 A O
W(0)= 0
IMMO
00 A [Lxr]
1 0 A O
0 1 0
P(0) =
M MO
00 A I [r>xr]
Do 1,

y(© =W (t-Dx()
V() =[C(t=Dx() x(1)]

o(f) = Cyy (1= 1)x(t)

—x (O)x(t

A { /(3 x(0) ﬂ

(1) =[o@) y()]

K(t) = [ﬂzA +@" (1)P(t fl)d)(t)]q(I)H (OP(-1)
P(1) =[Pt 1)~ Pt~ D®OK ()] 5

Cyx (1) = ACyy (t=D)+y()x™ (1)

Ca () = BCx (t =D+ x(Ox" (1)

W(t) = W(t—1)+[V(6) - W(t - 1)@ () K (2)
END
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A major drawback of the overdetermined recursive
algorithm such as COPAST, is likely to be the poor
numerical behavior. The poor numerical behavior
comes from the instability in the matrix inversion
part of (11a). One of the methods to improve the
stability is the square-root update of the matrix
square-root of the inverse matrix P(t) in Tablel. In
this paper, in order to improve the stability in the
inverse matrix in the overdetermined recursive
algorithm, we follows the Porat’s approach in [5].

First of all, the hyperbolic transformation needs to
update the matrix square-root in the COPAST and it

1s as follows.

5 A:X:{—xf’(r)x(r) ﬂ}

ro 0 (11h)
| @ 0 |-1 Ofjla -fla _ AJAT
|=pla plal 0 1|0 pla

/2
where @ =(XH(f)X(t))| .
Assume that we have found a matrix Q of

dimension (N +2)x(N +2) such that

J ol ., [1 0
R INQ_O I,

Such a matrix is called J-orthogonal. Furthermore,

(12)

assume that Q was chosen so that

A T (P2 (1) _{Ll 0}
[0 P2 R5IM L, (13)

where L and L, are lower trianglar of 2x2 and

N xN | respectively. By(12), we will have

A T (OPV2() {J 0} AT 0
U SO LI 3 L 0] S OINCaRO)

Loy oTu M (14)
{M LJ[O IN}{O LTZ}

AJAT Lo ()P -1)D(0) (152
=A@+ @ ()Pt -1)®(1) = L, JLT

P(1-)®(f) = MILY (15b)

ar

P(t-1)=MIM" +L,L
From (15b) we get

M = P(t — D)D) (L)'
Hence, substituting in (15¢),

L,LY = p@-1)-Mmam?
=P(t-1)—P(t - @@L I @ ()P -1)

(15¢)

(16)

=P(t-1)-P(t- 1)<I>(t)[A(t) + @ (1)P(t - l)d)(t)]»l 17

o7 ()P -1)
= B°P(1)
P2 (0= 4L,

Note also that

2. H&EZ™E dA COPAST 2iE|E °9f

Table 2. Summary of Square Root

(18)

Based COPAST

Algorithm.

1 0 A O

W(0)= 0
M M O
00 A , [Lxr]
I 0A O
0 1 0

P(0)=
M MO
00 A 1| .

Do £1,

y(0) = W (e~ Dx(r)

V() =[Ci (t-Dx(0) x(1)]
(1) = Cyy (1= 1x(0)
()=o) y@)

az(xH (t)x(t))”2
e sia
A=
-pla pla

Find Q
A <I>H(t)P1/2(t)Q_ L, 0
M L,

0 P2(1)
P20=p"L,
K= (ML;I)H
Cyx () = BCy (t =D +y()x" (1)

Cx (1) = fCyx (t=1)+x(t)x" (1)
W(t) = W(t 1)+ [V(©) - Wt - 1)@ () K (1)

END
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(MLT' )H = {P(z —DoO@HTILT! }H

(19)

H
— {P(r — 1)<I>(t)[A(t) +@7 (OHP@E— 1):1>(r)T1 }

=K

A new square-root recursive COPAST (SR-
COPAST) is summarized in Table 2.

IV. Square—Root Based Forward—Backward
COPAST Algorithm

PAST style algorithms such as PAST and
COPAST, use the sample covariance matrix Cx(f)
which is,

xi(7)

Co()=fCox(t=D)+| M |x(() A x;(1)](20)

xp(7)

Generally, the theoretical covariance matrix C is

Toeplitz and persymmetn'c[g].

However, the estimated covariance matrix C« () in
(20) does not guarantee all the properties, because it
does not satisfy the persymmetric property such as

0 1

J=| N
J(C (D)) T#C@1), where 1 0

so—called reversal matrix.

is the

We can make the sample covariance matrix
Toeplitz and persymmetric by some modification of
C

XX

(20). The modified sample covariance matrix
is,

R.()= %(c WO +ICT (103) (1)

The second term of (21) has the following

recursive form,

x; (1)
JICL I =pICL-DI+| M [x, () A x0)]
X1 ()
(22)

The modified sample covariance matrix Cu ()

=2X M 48 HIEHENTZ

utilizes the sample covariance matrix of the reverse

ordered vector as well as that of the normal forward
ordered vector. Therefore, we can call the C. () as

the forward- backward covariance matrix. The

forward- backward covariance matrix, Exx(t), is

invariant to the transform, J(¢)'J

JC ()T =Cy (1) (23)

(23) shows that Cy(®) is persymmetric[g].

Therefore, We may expect C.(») to be a better
estimate of C. than C.(®). In turn, this means that
the estimated principal components derived from
C..(0) are likely to be more accurate than those
C.(). To apply the

forward-backward covariance matrix to the PAST

obtained from
style algorithm, we should modify (20) considering a
forward- backward covariance matrix. The recursive

forward-backward covariance matrix is as follows.

xl(z) XZ(Z) % *
Cu)=fCut-D+ M M [xl(‘) A n(r)](%)
x5 @ LA 00

Comparing (24) with (21), (24) needs a scaling
factor, 1/2. However, the scaling factor does not
affect the subspace so that we dismiss the factor.
Applying (24) to COPAST algorithm, we can derive
COPAST with the

forward-backward covariance matrix.

a new algorithm

Considering the forward and backward data
vectors in this square root algorithm, it is enough

to apply the forward and backward data vectors
only to the recursive estimations of C(  and

C..(®), respectively. It is beca- use the square root
algorithm keeps the good matrix property of
(Pf])” =P in the matrix P"'. When applying the
forward and backward data vectors, we should

replace Cw(® and C.( as follows, respectively.

Cox ()= PCok (t =D+ Y(O)X (1) (25a)
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Cix (= PCxx (1 =D+ X)X (1) (25h)

We should also replace @), @ and V() with

Qr), @&» and V@, respectively, asfollows.
Q1) = Cy (1 -DX(), d0)=lo) Y0 an
Vi =lc t-nX@ X

The proposed square-root forward backward

COPAST (SRFB-COPAST) is summarized in Table
3.

E 3 MEFY Amnl ME2sE™ A4 COPAST &
2E 29
Table 3. Summary of Square Root Based FB-COPAST
Algorithm.
1 0 A O
0 1
W(0) =
M MO
00 A [Lxr]
1 0A O
ca=| ! 0
PYTIM MO
00 A 1 [rxr]
Do #1,
x,(t) x, (1)
X(H=| M M
X (0) x1 (1)

Y =W ¢t -1)X(@)

V()= [c <& (t=DX() i(r)]
Q) = Cy (OX(0)

o0 =lon Y0

a= (xH (t)x(t))”z

{ a 0 }
A=
-pla pla

Find Q
A <1>H(z)1>”2(z)Q{L1 0}
0 P2 (1) M L,

P2 (1)=p7'L,

K= (ML;I)H

Cyx (O =pCy5(t—D+YOXT (1)
Cix (D) = BCxx t— D+ XX (1)

W(0) = W(t—1)+ |[V(£) = Wt — () K ()
END

St COPAST (correlation—based projection approximation for subspace—tracking) &12|E ¢+ QIZN

V. Simulation Results

In this section, we demonstrate the applicability
of the the

estimation. We assume the signal subspace comes

proposed algorithm to subspace
from a narrow band far-field source by using a
For the

experimental purpose, we set the scenario that the

linear uniform array with 8 sensors.

angle of arrival of the signal comes from -30°.

In Fig.l, we compare the estimation accuracy of
the proposed algorithm (SRFB-COPAST) with the
conventional PAST algorithm and COPAST
algorithm in the fixed forgetting factors of 0.98
under the four different SNR cases of 5dB, 10dB,
15dB and 20dB,

quality of the estimated subspace, we show the

respectively. To compare the
distance between the estimated subspace and the

true subspace, which is defined in [9].

sin0(S,8) = ||(1 - P)f>|| (26)
where S is the true subspace, S is the estimated

sub—space, P is the projector onto S and P is the

projector onto S. The results in Fig.l show that the
proposed algorithm estimated the subspace more
accurately than the conventional PAST algorithm and
the COPAST algorithm in all SNR cases. In Fig.2,
we also compare the estimation accuracy of the
proposed (SRFB-COPAST) with the
conventional PAST  algorithm COPAST
algorithm in the fixed forgetting factors of 0.9 under
the four different SNR cases of 5dB, 10dB, 15dB and
20dB, respectively. The results in Fig.2 also show

algorithm

and

that the proposed algorithm estimated the subspace
accurately than the conventional PAST
algorithm and the COPAST algorithm in all the same
SNR cases. In the same SNR, the result from the
forgetting factor of 0.98 outperforms the result from

more

the forgetting factor of 0.9. It is because the larger
forgetting factor guarantees the longer effective data
window for estimation than the smaller forgetting

factor does. In table 4, we summarize the subspace
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Table 4.

Subspace Estimation Performance Comparison
in Subspace Distance.
Subspace Distance Subspace Distance
[dB] [dB]
Forgetting factor Forgetting factor
SNR (0.98) 0.9)
PAST -21.2 PAST -142
COPAST | -21.3 COPAST | -145
5dB
Proposed Proposed
-24.0 -175
Method Method
PAST -26.0 PAST -19.2
COPAST | -26.2 COPAST | -193
10dB
Proposed 91 Proposed 99
Method ' Method '
PAST -31.1 PAST 242
COPAST | -31.2 COPAST | -242
15dB
Proposed 1 Proposed 75
Method ' Method '
PAST -35.0 PAST -29.1
20dB COPAST | -352 COPAST | -29.2
Proposed 390 Proposed 339
Method ' Method ’
estimation accuracy by comparing the proposed

method, PAST and COPAST in different SNR cases.

VI. Conclusion

In this paper, we have proposed the square-root
COPAST  (SRFB-COPAST)
algorithm to estimate the signal subspace. The
SRFB-COPAST applies the forward and backward
ordered data vectors as well as square root update
algorithm to the COPAST. It improves the property

forward-backward

of the estimated covariance matrix to get closer to
the ideal covariance matrix. From the simulation
results, we can confirm the proposed SRFB-
COPAST outperforms the COPAST as well as the

conventional PAST in the estimation accuracy.
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