• Title/Summary/Keyword: recurrent neural network

Search Result 583, Processing Time 0.03 seconds

Control of Chaos Dynamics in Jordan Recurrent Neural Networks

  • Jin, Sang-Ho;Kenichi, Abe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.43.1-43
    • /
    • 2001
  • We propose two control methods of the Lyapunov exponents for Jordan-type recurrent neural networks. Both the two methods are formulated by a gradient-based learning method. The first method is derived strictly from the definition of the Lyapunov exponents that are represented by the state transition of the recurrent networks. The first method can control the complete set of the exponents, called the Lyapunov spectrum, however, it is computationally expensive because of its inherent recursive way to calculate the changes of the network parameters. Also this recursive calculation causes an unstable control when, at least, one of the exponents is positive, such as the largest Lyapunov exponent in the recurrent networks with chaotic dynamics. To improve stability in the chaotic situation, we propose a non recursive formulation by approximating ...

  • PDF

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

Malaysian Name-based Ethnicity Classification using LSTM

  • Hur, Youngbum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3855-3867
    • /
    • 2022
  • Name separation (splitting full names into surnames and given names) is not a tedious task in a multiethnic country because the procedure for splitting surnames and given names is ethnicity-specific. Malaysia has multiple main ethnic groups; therefore, separating Malaysian full names into surnames and given names proves a challenge. In this study, we develop a two-phase framework for Malaysian name separation using deep learning. In the initial phase, we predict the ethnicity of full names. We propose a recurrent neural network with long short-term memory network-based model with character embeddings for prediction. Based on the predicted ethnicity, we use a rule-based algorithm for splitting full names into surnames and given names in the second phase. We evaluate the performance of the proposed model against various machine learning models and demonstrate that it outperforms them by an average of 9%. Moreover, transfer learning and fine-tuning of the proposed model with an additional dataset results in an improvement of up to 7% on average.

High Performance Speed Control of IPMSM Drive using Recurrent FNN Controller (순환 퍼지뉴로 제어기를 이용한 IPMSM 드라이브의 고성능 속도제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1700-1707
    • /
    • 2011
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. Since the fuzzy neural network(FNN) is recognized general approximate method to control non-linearities and uncertainties, the development of FNN control systems have also grown rapidly. The FNN controller is compounded of fuzzy and neural network. It has an advantage that is the robustness of fuzzy control and the ability to adapt of neural network. However, the FNN has static problem due to their feed-forward network structure. This paper proposes high performance speed control of IPMSM drive using the recurrent FNN(RFNN) which improved conventional FNN controller. The RFNN has excellent dynamic response characteristics because of it has internally feed-back structure. Also, this paper proposes speed estimation of IPMSM drive using ANN. The proposed method is analyzed and compared to conventional FNN controller in various operating condition such as parameter variation, steady and transient states etc.

A Study on the Prediction of the Nonlinear Chaotic Time Series Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 비선형 혼돈 시계열의 예측에 관한 연구)

  • Lee, Hye-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2209-2211
    • /
    • 2004
  • Unlike the wavelet neural network, since a mother wavelet layer of the self-recurrent wavelet neural network (SRWNN) is composed of self-feedback neurons, it has the ability to store past information of the wavelet. Therefore we propose the prediction method for the nonlinear chaotic time series model using a SRWNN. The SRWNN model is learned for the modeling of a function such that the inputs arc known values of the time series and the output is the value in the future. The parameters of the network are tuned to minimize the difference between the nonlinear mapping of the chaotic time series and the output of SRWNN using the gradient-descent method for the adaptive backpropagation algorithm. Through the computer simulations, we demonstrate the feasibility and the effectiveness of our method for the prediction of the logistic map and the Mackey-Glass delay-differential equation as a nonlinear chaotic time series.

  • PDF

Design of Neural Network Controller Using RTDNN and FLC (RTDNN과 FLC를 사용한 신경망제어기 설계)

  • Shin, Wee-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.233-237
    • /
    • 2012
  • In this paper, We propose a control system which compensate a output of a main Neual Network using a RTDNN(Recurrent Time Delayed Neural Network) with a FLC(Fuzzy Logic Controller)After a learn of main neural network, it can occur a Over shoot or Under shoot from a disturbance or a load variations. In order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. We can confirm good response characteristics of proposed neural network controller by the results of simulation.

Gated Recurrent Unit Architecture for Context-Aware Recommendations with improved Similarity Measures

  • Kala, K.U.;Nandhini, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.538-561
    • /
    • 2020
  • Recommender Systems (RecSys) have a major role in e-commerce for recommending products, which they may like for every user and thus improve their business aspects. Although many types of RecSyss are there in the research field, the state of the art RecSys has focused on finding the user similarity based on sequence (e.g. purchase history, movie-watching history) analyzing and prediction techniques like Recurrent Neural Network in Deep learning. That is RecSys has considered as a sequence prediction problem. However, evaluation of similarities among the customers is challenging while considering temporal aspects, context and multi-component ratings of the item-records in the customer sequences. For addressing this issue, we are proposing a Deep Learning based model which learns customer similarity directly from the sequence to sequence similarity as well as item to item similarity by considering all features of the item, contexts, and rating components using Dynamic Temporal Warping(DTW) distance measure for dynamic temporal matching and 2D-GRU (Two Dimensional-Gated Recurrent Unit) architecture. This will overcome the limitation of non-linearity in the time dimension while measuring the similarity, and the find patterns more accurately and speedily from temporal and spatial contexts. Experiment on the real world movie data set LDOS-CoMoDa demonstrates the efficacy and promising utility of the proposed personalized RecSys architecture.

DeepAct: A Deep Neural Network Model for Activity Detection in Untrimmed Videos

  • Song, Yeongtaek;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.150-161
    • /
    • 2018
  • We propose a novel deep neural network model for detecting human activities in untrimmed videos. The process of human activity detection in a video involves two steps: a step to extract features that are effective in recognizing human activities in a long untrimmed video, followed by a step to detect human activities from those extracted features. To extract the rich features from video segments that could express unique patterns for each activity, we employ two different convolutional neural network models, C3D and I-ResNet. For detecting human activities from the sequence of extracted feature vectors, we use BLSTM, a bi-directional recurrent neural network model. By conducting experiments with ActivityNet 200, a large-scale benchmark dataset, we show the high performance of the proposed DeepAct model.

The Position Control by Neuro - Network PID controller (신경망 PID 제어기에 의한 위치제어)

  • 이진순;하홍곤;고태언
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.145-148
    • /
    • 2003
  • In this paper an nonlinear neuro PID controller is constructed by the control system of general PID controller using a Self-Recurrent Neural Network. And the games of the PID controller in the proposed control system are automatically adjusted by back-propagation algorithm of the neural network. Applying to the position control system, it's performance is verified through the results of computer simulation.

  • PDF

Design of neural network based ALE for QRS enhancement (QRS 파의 증대를 위한 신경망 ALE 설계)

  • 원상철;박종철;최한고
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.217-220
    • /
    • 2000
  • This paper describes the application of a neural network based adaptive line enhancer (ALE) for enhancement of the weak QRS complex corrupted with background noise. Modified fully-connected recurrent neural network is used as a nonlinear adaptive filter in the ALE. The connecting weights between network nodes as well as the parameters of the node activation function are updated at each iteration using the gradient descent algorithm. The real ECG signal buried with moderate and severe background noise is applied to the ALE. Simulation results show that the neural network based ALE performs well the enhancement of the QRS complex from noisy ECG signals.

  • PDF