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a b s t r a c t

Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or
emergency situations, the diagnostic activity of the NPP states is burdensome though necessary.
Numerous computer-based methods and operator support systems have been suggested to address this
problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series
data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM),
which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of
preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input
variables are calculated to output the accident diagnosis results. The outputs are also postprocessed
using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm
was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam
generator tube rupture, and a main steam line break. The trained algorithm was also tested to demon-
strate the feasibility of diagnosing NPP accidents.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Diagnosis tasks in nuclear power plants (NPPs) are directly
associated with safe and efficient operation. Monitoring and diag-
nosis of the state of NPPs is typically performed by operators who
consider process variables based on operating procedures. To di-
agnose the status of an NPP, operators use measurements from
numerous instruments, such as indicators and alarms.

However, there are several difficulties in the diagnosis of acci-
dents in NPPs. First, the quantity of variables generated by these
measurements is too high and can increase the difficulty of and
delay in their interpretation. In abnormal or emergency situations,
continuous monitoring of the critical safety variables can be a
mentally burdensome task for operators because they need to
identify possible success paths simultaneously [1]. In addition, even
though operating procedures are provided to operators, event
diagnosis under emergency conditions is regarded as the most
difficult task for operators because of the extremely stressful con-
ditions (e.g., time pressure for performing diagnosis within a
limited time and many fast-changing process parameters needed
for diagnosis) [2e6]. Moreover, depending on the severity of the
accident, theremay not be a clear indication of an abnormal state or

anomaly in the initial stage [7]. Owing to these factors, diagnostic
activities in emergency situations can cause not only a delay in
effective response but also serious consequences when selecting an
inadequate procedure (i.e., incorrect diagnosis) [8].

To reduce this burden on operators, many operator support
systems and diagnostic algorithms have been suggested to help
operators diagnose or detect accidents in NPPs. These are generally
based on artificial intelligence techniques, such as artificial neural
networks (ANNs), fuzzy logic, the hidden Markov model (HMM),
and the support vector machine. ANNs are regarded as one of the
most relevant approaches because they can deal with pattern
recognition problems as well as nonlinear problems that are char-
acteristic of NPP diagnosis tasks. Thus, several studies have applied
ANNs to develop algorithms for diagnosis tasks [7,10e15].

Unlike the conventional transient diagnostic methods, the
neural network, like the recurrent neural network (RNN), can only
cope with the dynamic emergent situation simultaneously.
Commonly, the diagnostic methods can be divided into two types
according to the timing of data being received as follows: receiving
all the data after the transient or receiving the data at intervals
during the operation. In the first case, the transient can be identi-
fied after the transient is complete, e.g., the plant is shut down. In
the second case, if the transient is too fast to be treated, then it will
be necessary to use an RNN or several successive sets of samples as
inputs to the neural network [11]. The RNN can naturally represent
dynamic systems and can capture the dynamic behavior of a
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system; moreover, it is a powerful network from which the infor-
mation feature related to the dynamic system in its hidden layer is
extracted [16]. However, there are two well-known issues with
RNNs: blowing-up and vanishing problems. These issues are the
temporal evolution of back-propagated error. Blowing-up may
cause the oscillation of weights; whereas, vanishing may lead
weights to be zero in most areas. Thus, it can make a prohibitive
duration for learning or even may not work at all [17].

Recently, long short-term memory (LSTM) has been suggested
to solve these issues [18]. LSTM, which is based on RNN architec-
ture, has been developed as a neural network architecture for
processing long temporal sequences of data. LSTM combines fast
training with efficient learning on tasks that require sequential
short-term memory storage for many time steps during a trial.
Because of these advantages, it can be applied to a variety of tasks
for varying-length sequential data, such as natural language pro-
cessing, image captioning, handwriting recognition, and genomic
analysis, and achieve state-of-the-art results for problems [19e26].

This article proposes an algorithm for the diagnosis of NPP ac-
cidents using LSTM. First, we briefly introduce the LSTM network
and RNN. Then, we suggest a diagnosis algorithm to diagnose ac-
cidents using the LSTM, which is trained using a compact nuclear
simulator (CNS) that is based on a Westinghouse three-loop, 930
MWe pressurized water reactor. Lastly, we test the trained algo-
rithm to demonstrate its effectiveness.

2. Long short-term memory

This study used the LSTM network for the online diagnosis al-
gorithm for NPP accidents. LSTM is an advanced version of the RNN,
which is also an approach of the ANN. The ANN is a statistical
learning algorithm used in machine learning, which was inspired
by the neural network (i.e., brain) of biology. It is a model that has a
problem-solving ability owing to artificial neurons (nodes) that
form a network of synaptic connections and change the synaptic
bond strength through learning. It can be divided into three para-
digms of learning, i.e., supervised learning, unsupervised learning,
and reinforcement learning, depending on the particular type of
learning task. For supervised learning, LSTM is optimized for the
problem by mapping implied data with the correct answers. It is
generally used to guess and approximate a veiled function. In other
words, supervised learning is appropriate for analyzing tasks such
as pattern recognition, regression, and sequential data. Accident
diagnosis can be classified as a pattern recognition problem. It is
generally known that ANNs show good performance in solving
pattern recognition problems. This section presents a short intro-
duction to the RNN and LSTM.

2.1. Recurrent neural network

Although numerous ANNs have been developed, we selected the
RNN tomodel the accident diagnosis algorithm because it performs
well in analyzing time series data. In contrast to other ANNs, it
assumes that the input and output are not independent of each
other, that is, it uses sequential information as input data. The same
calculation is applied to every element of a sequence, and the
output result is affected by the previous calculation result. Ac-
cording to this assumption, because it uses the same calculation,
the structure of the vanilla (i.e., the state consists of a single hidden
vector, h) RNN has a circular shape, as shown in Fig. 1. It is a kind of
ANN in which the hidden node is connected to the directional edge
to form a circular structure. Because of this structure, they all share
the same parameters, which is unlike general ANNs with different
parameters for each layer. A sequence of vectors, x, is processed by
applying recurrence formulas, Equations (1)e(3), at every time

step. Fig. 2 shows the internal operational process in a single RNN
time step [10e13].

ht ¼ fW ðht�1; xtÞ (1)

ht ¼ tanhðWhhht�1 þWxhxt þ bhÞ (2)

yt ¼ Whyht (3)

Because of this structure, the same task is applied to every
element of a sequence, and the output is affected by the results of
previous calculations; thus, it is called “recurrent”. In other words,
an RNN has memory information about the results computed thus
far, so the previous information can be used to solve the current
problem. Therefore, this algorithm is the most appropriate method
for solving a series of events or problems.

RNN cell

Fig. 1. Structure of vanilla RNN.
RNN, recurrent neural network.

Fig. 2. Internal operational process in a single RNN time step.
RNN, recurrent neural network.
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In addition, for training, it does not adjust theweights bymerely
transferring the errors that occurred at the current point to the
lower layer as in conventional error back-propagation, which is the
learning algorithm of existing ANNs. The conventional back-prop-
agation updates each weight and bias by going back to the neural
network and considering the portion of error attributed to the
output stage. However, the RNN learns this from the back-propa-
gation through time algorithm, which delivers the errors occurring
at the current point to the past point. In this case, since each layer
has the same weight in the RNN, all the derivative errors corre-
sponding to the weight at the same position are added, and the
weight is updated by averaging. That is, the error occurring in the
current step is learned by propagating the error to the past state.

Because of these characteristics from back-propagation through
time, for the NPP field, the RNN is used for a wide range of time
series data analysis, such as system health management, fault or
anomaly detection, and accident diagnosis. The neuro-expert sys-
tem was proposed for the combination of an RNN and multilayer
perceptron with simple rules. To detect anomalies in the early
stages and to give alerts about occurring wrong signals, neural
networks, such as the RNN or multilayer perceptron, are applied. In
parallel with neural networks, diagnosing based on the alert in-
formation and inference of the cause are performed through the
expert system. It can also be applied to analyze dynamic cases
solely (e.g., a high-temperature gas cooling reactor, bearing dam-
age) [9,16,27,28].

The original RNN tracks past values back in time. However, too
much back-propagation over a long period causes a vanishing
gradient problem owing to the weight being multiplied repeatedly
in the process of learning so far into the past. The concept of a
gradient is simply a measure of the rate of change of y with vari-
ations in x. By applying this to a neural network, the relationship
between all weights and errors of the neural network can be ob-
tained; that is, changing the value of a neural network allows the
resulting error change to be determined. If the gradient cannot be
obtained accurately, the relationship between the measure and the
error is not clear; thus, learning cannot be achieved properly.
During the back-tracking of the RNN in time, because the neural
network consists of multiplication operations, multiplying a very
small value several times ultimately results in a large value (i.e., a
vanishing gradient, blowing up), like compound interest charged
by banks [17].

2.2. Long short-term memory

We propose LSTM for sequence learning to deal with the RNN
for this vanishing gradient problem. LSTM is a neural network ar-
chitecture based on the RNN for processing long temporal se-
quences of data. Sequential data can also be dealt with by other
sequence models such as Markov models, conditional random
fields, and Kalman filters. However, only LSTM is equipped to learn
long-range dependencies. It may be difficult to say that LSTM has a
different structure from an RNN, but it uses a different equation to
calculate the hidden state. LSTM uses a structure called a memory
cell instead of an RNN neuron. It combines fast training with effi-
cient learning on the tasks, which require sequential short-term
memory storage for many time steps during a trial. LSTM can
learn to bridge minimal time lags in excess of 1,000 discrete time
steps by enforcing special units, which are called memory cells. It
determines whether the previous memory value should be altered
and calculates the value to be stored in the current memory based
on the current state and the input value of the memory cell. This
structure is highly effective in storing long sequences. In addition,
alternative models (i.e., Markov models, conditional random fields,
and Kalman filters) require domain knowledge or feature

engineering, offering less chance for unexpected discovery,
whereas LSTM can learn representations and discover unforeseen
structures [9,29,30].

As with other LSTMmodels, in this study, each LSTM cell adjusts
the output value using the input gate, forgetting gate, and output
gate while maintaining the cell state. Information in the cell state is
unchanged, and information can be added or deleted through each
gate. In addition, since the operation of each gate is composed of an
addition operation attached to the cell state, it can avoid the van-
ishing gradient problem.

The input gate determines the capacity of the input value. The
forgetting gate determines the degree to which the previous cell
state is forgotten, and the output gate determines how much to
output. Equation (4), denoted by g, represents the input node and
has a tanh activation function denoted by f; Equations (5)e(7)
represent the gates denoted by i, f , and o, respectively; s repre-
sents a sigmoid function. Fig. 3 shows the architecture of the LSTM
cell applied in this study.

gðtÞl ¼ f
�
Wg$½ht�1; xt � þ bgl

�
(4)

iðtÞl ¼ s
�
Wi$½ht�1; xt � þ bil

�
(5)

f ðtÞl ¼ s
�
Wf $½ht�1; xt � þ bfl

�
(6)

oðtÞl ¼ s
�
Wo$½ht�1; xt � þ bol

�
(7)

As shown in Fig. 3, the LSTM unit consists of a cell with several
gates attached. These gates update the layers of memory cells hðtÞl ,
where hðtÞl�1 represents the previous layer at the same sequence step
(i.e., a previous LSTM layer) and hðt�1Þ

l means the same layer at the
previous sequence step.

This study applies the conventional LSTM structure. To design the
optimized LSTM network without change of the LSTM unit, it is
necessary to determine the proper hyperparameters to model
the algorithm, such as the number of input sequences or hidden
layers. This is because the purpose of learning through the neural
network is to determine theweight and bias values thatminimize the
cost function. However, to obtain the expected level without the
overfitting problem, the optimization of hyperparameters is required.

The length of input sequence can be a kind of hyperparameters
that represents the temporal length of the input data that LSTM

Fig. 3. Architecture of the LSTM cell.
LSTM, long short-term memory.
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uses to compute the output. The performance of the network
changes according to the length of the input sequence. In addition,
the hidden layer is also the hyperparameter that is needed to
transform the inputs into a useable form for the output layer.
Basically, each layer in the neural network obtains the input for
analysis farther from the original raw data, which is closer to the
goal. Therefore, the performance of the model can be influenced by
the number of hidden layers.

Four approaches (manual search, grid search, random search,
and Bayesian optimization) are widely used in hyperparameter
optimization. The manual search is a method of estimating optimal
parameters and observing the results based on the designer's
intuition or experience. In a large frame, the grid search has a big
difference from the manual search and is conceptually similar;
however, it is analyzed using a priori knowledge, and the scope of
the hyperparameter is determined. Then, we set the point at a
certain interval in the range and test the points individually to
determine the optimal value. Following this, based on the esti-
mated optimal values, the new optimum value is searched by
subdividing it. Like the grid search, the random search uses a priori
knowledge to determine the range of hyperparameters. Then,
instead of searching at regular intervals, an operation to find the
optimal value proceeds. This does not seem to be different from a
grid search, but if the result must be produced within a specific
time frame, a random search tends perform better [31]. Since the
basic principle of Bayesian optimization uses prior knowledge, the
key to this method is based on determining the direction of the
next search after creating a statistical model based on the results of
the experiments thus far. It tends to find optimal values within a
shorter time than using random or grid search [32]. Unfortunately,

there is no golden rule thus far, and much of it depends on the
experience and intuition of the designer.

3. Development of accident diagnosis algorithm using LSTM

This chapter introduces the accident diagnosis algorithm based
on LSTM. The accident diagnosis is performed with the NPP data
sets through the trained classifier. During the training stage, the
classifier is trained on the basis of training data sets with answer-
labeled data, which has a specific pattern for each accident. After
sufficient training, it is validated with the test data set and then
used for real cases. Fig. 4 shows an overview of the process for
accident diagnosis using LSTM.

To model the algorithm, a desktop computer with the following
hardware configurations is used: NVIDIA GeForce GTX 1080 8 GB
GPU, Intel 4.00 GHz CPU, Samsung 850 PRO 512 GB MZ-7KE512B
SSD, and 24 GB memory. In case of software, Python 3.5.3 is used
for coding language, which is one of the most popular computer
languages for machine learning and deep learning. The libraries
developed to model the algorithm for machine and deep learning
(e.g., tensorflow and scikit-learn) were used.

3.1. LSTM network model for accident diagnosis

The model for accident diagnosis is designed for multilabel
classification because diagnoses may not be mutually exclusive. To
predict an accident, the trend of such a sequence of variables is
needed as inputs. Thus, a many-to-one structure is applied to
design the model. Fig. 5 shows a simple LSTM model for multilabel
classification, which is the base model applied in this study.

Fig. 4. Overview of process of accident diagnosis.
LSTM, long short-term memory; LOCA, loss of coolant accident; MSLB, main steam line break; NPP, nuclear power plant; SGTR, steam generator tube rupture.

J. Yang, J. Kim / Nuclear Engineering and Technology 50 (2018) 582e588 585



According to the specific number of NPP input data sequences, the
model can diagnose the plant state by recognizing the pattern (i.e.,
the NPP trend).

3.2. Preprocessing of input variables

Preprocessing of the input values is applied to the LSTM input
layer. For the purpose of training the LSTM network, all the input
values in the network should be scaled by normalizing each value
from the raw NPP data. This is because normalization can help
reduce the chance of getting stuck in local minima (i.e., not global
minima among the several minimum points of error during the
learning process) owing to different scales of variables (e.g., reactor
coolant system (RCS) average temperature: 300�C, Valve State: 0 or
1). The minemax scaling method is applied to adjust the input
values. The minimum and maximum values are determined within
the collected data (i.e., not actual minimum or maximum of plant
variables). Normalization using the minemax scaling method
performs a linear transformation on the raw data, and via the
following Equation (8), the data are scaled to range from zero to
one.

Xnorm ¼ ðX � XminÞ=ðXmax � XminÞ (8)

3.3. Postprocessing of output variables

As a postprocessing for the output of the LSTM network, the
softmax function layer shown in Fig. 6 is used to determine the
ranking of accident probability. The softmax function is an activa-
tion function commonly used in the output layer of the deep
learning model; it aims to classify more than three classes [33].
Therefore, this study applies the softmax function for post-
processing because there are six classes in the training. Softmax is a
function that exponentially increases the importance through an
exponential function; it also increases the deviation between the
values and then normalizes. It normalizes the input value to the
output value between zero and one via the following Equation (9),
and the sum of the output values is always one. Fig. 7 shows an
example of an application of the softmax layer to transform output

values to probabilities. Even if it is transformed, the magnitude
relation of each output value does not change, and the output from
softmax can be analyzed in terms of probability [34,35]; thus, it
enables stochastic analysis for multilabel classification.

SðyiÞ ¼ eyi
.X

eyi (9)

3.4. Training of the LSTM network

The network is trained and implemented using the CNS, which
implements theWestinghouse 3-loop, 930 MWe pressurized water
reactor. It was originally developed by the Korea Atomic Energy
Research Institute. Fig. 8 shows the LSTM model for multilabel
classification that is applied in this study. First, a total of 168 pa-
rameters are selected based on emergency operating procedures,
critical safety functions, and the importance for the control of NPP
operation; finally, input preprocessing is used to select 100 pa-
rameters. A total of 112 scenarios with 122,609 data sets (i.e.,
122,609 s of data including 100 plant parameter values in each time
step) are used for training, as shown in Table 1. The scenarios
include automatic actuation of systems and components and
manual actuations followed by procedures. The learning rate and
number of iteration sets are 0.005 and 3,000, respectively.

3.5. Optimization of network

To optimize the model, we used the manual search method,
changing the hyperparameters and selecting proper input variables.
Table 2 shows an accuracy comparison of the results of the different
structures of networks. Input sequence lengths of five and 10 and
twoor threehidden layers are tested. To evaluate theperformanceof

Fig. 5. Simple LSTM model for multilabel classification.
LSTM, long short-term memory.

Fig. 6. Example of softmax function layer.

S

O P

Fig. 7. Example of transformation from outputs to probabilities.
LOCA, loss of coolant accident; MSLB, main steam line break; SGTR, steam generator
tube rupture.

Fig. 8. LSTM model for multilabel classification.
LSTM, long short-term memory.
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the networks, we consider the accuracy of the diagnosis results. The
accuracy is defined as Equation (10). We only consider the accuracy
as an optimization parameter. This is because the training and
validation data cannot be false positive or false negative if false
positive or false negative data are notmade artificially. Based on the
performance comparison, the optimal LSTM network with an input
sequence length of 10 and three layers is selected.

Accuracy ¼ Correct results
Diagnosis results

(10)

4. Test

We tested the proposed algorithm with three scenarios, loss of
coolant accident (LOCA), steam generator tube rupture (SGTR), and
main steam line break (MSLB), which were not used in the training
session. Fig. 9 shows the test results for LOCA with sizes of 10 and
100 cm2 in Loop 1 cold-leg. Each line represents the accident or
normal state of the NPP. The malfunction was injected at 30 s for
every test scenario. The X-axis and Y-axis represent the time and
diagnosed result from the model with postprocessing, respectively.
The graphical results show that the accident was diagnosed
continuously (i.e., the oscillation range is under 0.02) after
approximately 150 s.

Figs. 10 and 11 also show the diagnosis correctly right after the
malfunction is injected (i.e., 30 s) with the proposed algorithm for
SGTR and MSLB accidents. The reason the diagnosis of LOCA takes
longer time than SGTR and MSLB is that three different LOCAs were
trained in the LSTM network (i.e., cold-leg LOCA, hot-leg LOCA,
pressurizer safety valve LOCA). Although the location is different in
those LOCAs, the plant behaviors are similar and then the LSTM
takes a slightly long time to produce the steady result. In addition,
the diagnoses for small and large LOCAs take a similar length of time.
However, the large LOCA result shows amore distinguished softmax
output from the other accidents than the small LOCA result does.

5. Discussion

In the test scenarios, the accident diagnosis with the proposed
algorithm performs well at trained accidents. It provides stable,
distinct results from injection of malfunction after about 120 s in
the LOCA and a few seconds in the SGTR and MSLB. In case of a
LOCA, the result of the algorithm seems to be unstable in the early
stage of the accident as shown in Fig. 9, mainly because different

Table 1
Scenarios used for network training.

Initiating events Number

Cold leg loss of coolant accident (LOCA) 29
Hot leg LOCA 29
PZR safety valve failed-to-open 5
Steam generator tube rupture 17
Main steam line break 32
Total 112

Table 2
Accuracy comparison between networks.

No Sequence Layer Accuracy

168 inputs 100 inputs

1 5 2 0.609 0.839
2 10 2 0.784 0.854
3 5 3 0.620 0.833
4 10 3 0.795 0.859

Fig. 9. Accident diagnosis results of LOCA.
LOCA, loss of coolant accident; MSLB, main steam line break; SGTR, steam generator
tube rupture.

Fig. 10. Accident diagnosis results of 40 cm2 SGTR in Loop 2.
LOCA, loss of coolant accident; MSLB, main steam line break; SGTR, steam generator
tube rupture.

Fig. 11. Accident diagnosis results of 200 cm2 MSLB in Loop 2.
LOCA, loss of coolant accident; MSLB, main steam line break; SGTR, steam generator
tube rupture.
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locations of the LOCA have been trained in the LSTM network, i.e.,
hot-leg LOCA, cold-leg LOCA, and pressurizer safety valve LOCA.
The symptoms of these LOCAs are similar so the algorithm takes a
relatively longer time to provide a stable diagnosis result.

Compared to the other methods such as in studies by Şeker et al.
and Kwon et al. [9,36] which use Elman's RNN and HMM, the
proposed algorithm performs better in some ways. In comparison
with Elman's RNN [9], the proposed algorithm can diagnose more
accidents, while the Elman's RNN only detects whether or not it is a
transient. In addition, in comparisonwith HMM [36], this algorithm
can perform the diagnosis of accidents at every time step. Thus, it
can be applied to the flexible online diagnosis.

There is also room for improvement of the performance by
adjusting the hyperparameters. Owing to the limitation of the
computer we used, i.e., a desktop computer with the Intel Core i7-
6700k CPU 4.00 GHz and an NVIDIA GeForce GTX 1080 8 GB GPU,
weapplied three hidden layers aswell as a 10 input sequence length.
Because this configuration is not a perfect optimization, a computer
with better specifications would produce a better performance.

The proposed algorithm does not include the ability to diagnose
unknown or untrained accidents. However, if this algorithm is
implemented as an actual operator support system in the NPP, this
capability is an important feature of the system because it can
define the scope of diagnosed accidents or a limitation of the sys-
tem. Thus, this algorithm needs to be improved to include how to
react to unknown or untrained situations.

6. Conclusion

We proposed an accident diagnosis algorithm that uses LSTM,
which is a technique of ANNs. The algorithm includes preprocess-
ing, an LSTM network, and postprocessing using softmax. The al-
gorithmwas also trained for a fewaccidents: LOCA, SGTR, andMSLB.
A CNS was used to produce the training data. Lastly, the trained
algorithmwas tested to demonstrate the feasibility of the proposed
algorithm. The test results showed that it can diagnose accidents in
a stable, distinctive way. We expect that this algorithm can be used
as an online diagnostic function in operator support systems, e.g., a
fault diagnostic system or an autonomous control system.
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