• Title/Summary/Keyword: rectangular liquid storage tank

Search Result 21, Processing Time 0.026 seconds

Study on Sloshing Behaviors in Liquid Storage Tank with Rectangular Cross Section (사각단면 액체저장탱크에서의 슬로싱 거동 연구)

  • 윤성호;이은동;박기진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1087-1090
    • /
    • 2003
  • In this study, experimental procedures were suggested to investigate the sloshing behavior of a liquid storage tank subjected to inevitably external vibrating conditions. For this purpose. liquid storage tank with rectangular cross section was made of an acrylic resin for the visualization of liquid fluctuation. A specially designed vibrator was used to provide a specified vibrating condition to the liquid storage tank. Extrapolation technique was applied to determine sloshing natural frequency by using various sloshing frequencies at each vibrating displacement and liquid contents at a fixed vibrating frequency. Sloshing mode was also determined from continuous images or liquid fluctuation captured from a video camera. In addition, change in the height of the liquid free surface was measured by using a floating target and a laser displacement sensor. It is found that the suggested method can be applicable to identify the sloshing behavior of liquid storage tank with rectangular cross section.

  • PDF

Simplified Analysis of Rectangular Liquid Storage Tanks Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 직사각형 액체저장탱크의 단순해석법)

  • Lee, Jin Ho;Cho, Jeong-Rae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.203-209
    • /
    • 2022
  • A simplified method for earthquake response analysis of a rectangular liquid storage tank is proposed with fluid-structure interaction considered. In order to simplify the complex three-dimensional structural behavior of a rectangular liquid storage tank, it is assumed that structural deformation does not occur in the plane parallel to the direction in which the earthquake ground motion is applied but in the plane perpendicular to the direction. The structural deformation is approximated by combining the natural modes of the simple beam and the cantilever beam. The hydrodynamic pressure, the structure's mass and stiffness, and the hydrodynamic pressure's added mass are derived by applying the Rayleigh-Ritz method. The natural frequency, structural deformation, pressure, effective mode mass, and effective mode height of the rectangular liquid storage tank are obtained. The structural displacement, hydrodynamic pressure, base shear, and overturning moment are calculated. The seismic response analysis of an example rectangular liquid storage tank is performed using the proposed simplified approach, and its accuracy is verified by comparing the results with the reference solution by the finite element method. Existing seismic design codes based on the hydrodynamic pressure in rigid liquid storage tanks are observed to produce results with significant errors that cannot be ignored.

The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon

  • Saghi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-168
    • /
    • 2016
  • Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank's perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions were solved using coupled boundary element - finite element method. The code performance for sloshing modeling was validated using Nakayama and Washizu's results. Finally, this code was used for partially filled rectangular and trapezoidal storage tanks and free surface displacement, pressure distribution and horizontal and vertical forces exerted on the tanks' perimeters due to liquid sloshing phenomenon were estimated and discussed.

Shaking Table Test of a Rectangular Liquid Storage Tank (직사각형 액체저장탱크의 동적 응답특성에 관한 진동대 실험)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.209-214
    • /
    • 2000
  • Shaking table tests were performed to investigate dynamic behavior of a three dimensional flexible rectangular liquid storage tank. Response characteristics to the three components of translational motion and three component of rotational motion were studied. The aluminium tank was exposed to the shaking high enough to make it behave in nonlinear range. Only very limited amount of the data have been processed yet. Very interesting phenomena on the effects of non-symmetry have been observed and presented. Test results that show nonlinear behavior under the high intensity shaking are reported.

  • PDF

Characteristics of Earthquake Responses of a Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions (수평 양방향 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 특성)

  • Lee, Jin Ho;Lee, Se Hyeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Analytical and experimental studies show that the dynamic behavior of liquid storage tanks is significantly influenced by the fluid-structure interaction (FSI). The effects of FSI must be rigorously considered for accurate earthquake analysis and seismic design of liquid storage tanks. In this study, a dynamic analysis of a rectangular liquid storage tank subjected to bi-directional earthquake ground motions is performed and its dynamic characteristics are examined, with the effects of FSI rigorously considered. Hydrodynamic pressure is evaluated using the finite-element approach with acoustic elements and applied to the structure. The responses of the rectangular tank subjected to bi-directional earthquake ground motions are thus obtained. It can be observed that the incident angle of bi-directional horizontal ground motions has significant effects on the dynamic responses of the considered system. Therefore, the characteristics of the system must be considered in its seismic design and performance evaluation.

The Rocking Response of Three Dimensional Rectangular Liquid Storage Tank (3차원 구형 액체 저장 Tank의 Rocking응답)

  • 김재관;박진용;진병무;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.23-34
    • /
    • 1998
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of translational and/or rocking motions on the seismic response of flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation for the dynamics of 3-D rectangular tanks subjected to the translational and/or rocking motion is abtained by applying Rayleigh-Ritz method. The dynamic stiffness matrices of a rigid rectangular foundation resting on the surface of a stratum overlaid bedrock are calculated by hyperelement method. The seismic responses of 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation for the fluid-tank system with the dynamic stiffness matrix of th rigid surface foundation.

  • PDF

Seismic behavior of three dimensional concrete rectangular containers including sloshing effects

  • Mirzabozorg, H.;Hariri-Ardebili, M.A.;Nateghi A., R.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.79-98
    • /
    • 2012
  • In the present paper, the three-dimensional model of a typical rectangular concrete tank is excited using an artificial and a natural three components earthquake ground motion and the staggered displacement method is utilized for solving the coupled problem of the tank-contained liquid system in time domain. In the proposed method, surface sloshing of the liquid is taken into account in addition to the impulsive term and the appropriate damping values are applied on both of them. The resulted responses are compared with those obtained from the ABAQUS finite element software. It is found that the convective term affects responses extensively and must be considered in seismic design/safety assessment of storage tanks. In addition, the utilized method for solving the coupled problem is stable during the conducted general dynamic analyses and is able to capture the expected phenomena.

A Study on Vibration Characteristics with Sloshing Mode Effect in Water Tank Structure (유체 슬로싱모드가 탱크의 진동에 미치는 영향에 대한 연구)

  • Bae, Sung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • Liquid storage rectangular tank structures are used in many fields of airplane and marine engineering. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance. Therefore it is essentially important to estimate vibration characteristics of tank structures. Many Investigators studied the vibration of cylindrical and rectangular tank structures containing still fluid. In general, the eigenbehavior of interior liquid is characterized by the sloshing mode while that of the structure by the bulging mode. However, the structure deformation to the sloshing mode and the liquid free-surface fluctuation to the bulging mode have been neglected in the classical added-mass computation. in the present paper, we study the vibration characteristics with sloshing mode effect.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Time-Domain Earthquake Response Analysis of Rectangular Liquid Storage Tank Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 직사각형 액체저장탱크의 시간영역 지진응답해석)

  • Lee, Jin Ho;Cho, Jeong-Rae;Han, Seong-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.383-390
    • /
    • 2020
  • Since the dynamic behaviors of liquid storage tanks on flexible soil are significantly influenced by the fluid-structure-soil interaction (FSSI), its effects must be rigorously considered for accurate earthquake analysis and seismic design of the storage system. In this study, dynamic analysis is performed for a rectangular liquid storage tank on flexible soil, and its dynamic characteristics are examined by rigorously considering the effects of FSSI. The hydrodynamic force and the interaction force between the structure and soil are evaluated using the finite-element approach. In the evaluations, mid-point integrated finite elements and viscous dampers are considered for energy radiation into the infinite soil. The effective earthquake force is then obtained from free-field analysis. It is thus demonstrated that the earthquake responses of the rectangular liquid storage tank on flexible soil are significantly influenced by the FSSI.