Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2015.12.001

The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon  

Saghi, Hassan (Department of Civil Engineering, Hakim Sabzevar University)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.8, no.2, 2016 , pp. 153-168 More about this Journal
Abstract
Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank's perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions were solved using coupled boundary element - finite element method. The code performance for sloshing modeling was validated using Nakayama and Washizu's results. Finally, this code was used for partially filled rectangular and trapezoidal storage tanks and free surface displacement, pressure distribution and horizontal and vertical forces exerted on the tanks' perimeters due to liquid sloshing phenomenon were estimated and discussed.
Keywords
Pressure distribution; Liquid sloshing phenomenon; Sway motion; Trapezoidal storage tank; Free surface displacement; Horizontal and vertical forces; Coupled boundary element-finite element method;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Chen, B.F., Chiang, H.W., 2000. Complete two-dimensional analysis of sea-wave-induced fully non-linear sloshing fluid in a rigid floating tank. Ocean Eng. 27 (9), 953-977.   DOI
2 Chen, B.F., Nokes, R., 2005. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. J. Comput. Phys. 209 (1), 47-81.   DOI
3 Chen, Y.W., Yeih,W.C., Liu, C.H., Chang, J.R., 2012. Numerical simulation of the two-dimensional sloshing problem using a multi-scaling Trefftz method. Eng. Anal. Bound. Elem. 36 (1), 9-29.   DOI
4 Choun, Y.S., Yun, C.B., 1996. Sloshing characteristics in rectangular tanks with a submerged block. Comput. Struct. 61 (3), 401-413.   DOI
5 Curadelli, O., Ambrosini, D., Mirasso, A., Amani, M., 2010. Resonant frequencies in an elevated spherical container partially filled with water: FEM and measurement. J. Fluids Struct. 26 (1), 148-159.   DOI
6 De Chowdhury, S., Sannasiraj, S.A., 2014. Numerical simulation of 2D sloshing waves using SPH with diffusive terms. Appl. Ocean Res. 47, 219-240.   DOI
7 Frandsen, J.B., 2004. Sloshing motions in excited tanks. J. Comput. Phys. 196 (1), 53-87.   DOI
8 Gavrilyuk, I.P., Lukovsky, I.A., Timokha, A.N., 2005. Linear and nonlinear sloshing in a circular conical tank. Fluid Dyn. Res. 37 (6), 399-429.   DOI
9 Gomez-Goni, J., Garrido-Mendoza, C.A., Cercos, J.L., Gonzalez, L., 2013. Two phase analysis of sloshing in a rectangular container with Volume of Fluid (VOF) methods. Ocean Eng. 73, 208-212.   DOI
10 Hasheminejad, S.M., Aghabeigi, M., 2012. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles. Appl. Math. Model. 36 (1), 57-71.   DOI
11 Huang, S., Duan, W.Y., Zhu, X., 2010. Time-domain simulation of tank sloshing pressure and experimental validation. J. Hydrodyn. Ser. B 22 (5), 556-563.   DOI
12 Jing Li, H.L., Zhen Chen, Z.Z., 2014. Numerical studies on sloshing in rectangular tanks using a tree-based adaptive solver and experimental validation. Ocean Eng. 82, 20-31.   DOI
13 Jung, J.H., Yoon, H.S., Lee, C.Y., Shin, S.C., 2012. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank. Ocean Eng. 44, 79-89.   DOI
14 Jung, J.H., Yoon, H.S., Lee, C.Y., 2015. Effect of natural frequency modes on sloshing phenomenon in a rectangular tank. Int. J. Nav. Archit. Ocean Eng. 7 (3), 580-594.   DOI
15 Karamanos, S.A., Patkas, L.A., Platyrrachos, M.A., 2005. Sloshing effects on the seismic design of horizontal-cylindrical and spherical industrial vessels. J. Press. Vessel Technol. 128 (3), 328-340.
16 Ketabdari, M.J., Saghi, H., 2013. Parametric study for optimization of storage tanks considering sloshing phenomenon using coupled BEMeFEM. Appl. Math. Comput. 224, 123-139.
17 Ketabdari, M.J., Saghi, H., 2013. Numerical study on behaviour of the trapezoidal storage tank due to liquid sloshing impact. Int. J. Comput. Methods 10 (6), 1-22.
18 Ketabdari, M.J., Saghi, H., 2013. A new arrangement with nonlinear sidewalls for tanker ship storage panels. J. Ocean Univ. China 12 (1), 23-31.   DOI
19 Ketabdari, M.J., Saghi, H., Rezaei, H., Rezanejad, K., 2015. Optimization of linear and nonlinear sidewall storage units coupled boundary element-finite element methods. KSCE J. Civ. Eng. 19 (4), 805-813.   DOI
20 Kim, Y., 2013. Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation. Int. J. Nav. Archit. Ocean Eng. 5 (2), 227-245.   DOI
21 Lee, S.J., Kim, M.H., Lee, D.H., Kim, J.W., Kim, Y.H., 2007. The effects of LNG- tank sloshing on the global motions of LNG carriers. Ocean Eng. 34 (1), 10-20.   DOI
22 Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W., Lee, Y.B., 2007. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Eng. 34 (1), 3-9.   DOI
23 Lee, C.S., Cho, J.R., Kim, W.S., Noh, B.J., Kim, M.H., Lee, J.M., 2013. Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis. Int. J. Nav. Archit. Ocean Eng. 5 (1), 1-20.   DOI
24 Liu, D., Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227 (8), 3921-3939.   DOI
25 Liu, D., Lin, P., 2009. Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng. 36 (2), 202-212.   DOI
26 Lu, L., Jiang, S.C., Zhao, M., Tang, G., 2015. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions. Ocean Eng. 108, 662-677.   DOI
27 Mciver, P., 1989. Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth. J. Fluid Mech. 201, 243-257.   DOI
28 Ming, P.J., Duan, W.Y., 2010. Numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids. J. Hydrodyn. Ser. B 22 (6), 856-864.   DOI
29 Panigrahy, P.K., Saha, U.K., Maity, D., 2009. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. Ocean Eng. 36 (3-4), 213-222.   DOI
30 Nakayama, T., Washizu, K., 1984. In: Bauerjee, P.K., Mukherjee, S. (Eds.), Boundary Element Analysis of Nonlinear Sloshing Problems. Published in Developments in Boundary Element Method-3. Elsevier Applied Science Publishers, Newyork.
31 Papaspyrou, S., Valougeorgis, D., Karamanos, S.A., 2003. Refined solution of externally induced sloshing in half-full spherical containers. J. Eng. Mech. 129 (12), 1369-1379.   DOI
32 Papaspyrou, S., Karamanos, S.A., Valougeorgis, D., 2004. Response of half-full horizontal cylinders under transverse excitation. J. Fluids Struct. 19 (7), 985-1003.   DOI
33 Patkas, L.A., Karamanos, S.A., 2007. Variational solutions of externally-induced sloshing in horizontal-cylindrical and spherical vessels. J. Eng. Mech. 133 (6), 641-655.   DOI
34 Pirker, S., Aigner, A., Wimmer, G., 2012. Experimental and numerical investigation of sloshing resonance phenomena in a spring-mounted rectangular tank. Chem. Eng. Sci. 68 (1), 143-150.   DOI
35 Saghi, H., Ketabdari, M.J., 2012. Numerical simulation of sloshing in rectangular storage tank using coupled FEM-BEM. J. Mar. Sci. Appl. 11 (4), 417-426.   DOI
36 Shekari, M.R., Khaji, N., Ahmadi, M.T., 2009. A couple BE-FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid-structure interaction. J. Fluids Struct. 25, 567-585.   DOI
37 Wiesche, S.A.D., 2008. Sloshing dynamics of a viscous liquid in a spinning horizontal cylindrical tank. Aerosp. Sci. Technol. 12 (6), 448-456.   DOI
38 Wu, G.X., 2007. Second-order resonance of sloshing in a tank. Ocean Eng. 34 (17-18), 2345-2349.   DOI
39 Yue, B.Z., 2008. Nonlinear coupling dynamics of liquid filled spherical container in microgravity. Appl. Math. Mech. 29, 1085-1092.   DOI
40 Wu, C.H., Faltinsen, O.M., Chen, B.F., 2012. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluids 63, 9-26.   DOI
41 Zhang, C., 2015. Analysis of liquid sloshing in LNG carrier with wedge-shaped tanks. Ocean Eng. 105, 304-317.   DOI
42 Zhang, C., 2015. Application of an improved semi-Lagrangian procedure to fully-nonlinear simulation of sloshing in non-wall-sided tanks. Appl. Ocean Res. 51, 74-92.   DOI
43 Zhang, C., Li, Y., Meng, Q., 2015. Fully nonlinear analysis of second-order sloshing resonance in a three-dimensional tank. Comput. Fluids 116, 88-104.   DOI
44 Zhao, Y., Chen, H.C., 2015. Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method. Ocean Eng. 104, 10-30.   DOI
45 Zou, C.F., Wang, D.Y., Cai, Z.H., 2015. Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics. Int. J. Nav. Archit. Ocean Eng. 7 (4), 670-690.   DOI
46 Celebi, M.S., Akyildiz, H., 2002. Nonlinear modeling of liquid sloshing in moving rectangular tank. Ocean Eng. 29 (12), 1527-1553.   DOI
47 Akyildiz, H., Unal, N.E., 2005. Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing. Ocean Eng. 32 (11), 1503-1516.   DOI
48 Akyildiz, H., Unal, N.E., 2006. Sloshing in a three-dimensional rectangular tank: numerical simulation and experimental validation. Ocean Eng. 33 (16), 2135-2149.   DOI
49 Belakroum, R., Kadja, M., Mai, T.H., Maalouf, C., 2010. An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid. Mech. Res. Commun. 37 (3), 341-346.   DOI