• 제목/요약/키워드: rectangular hollow section

검색결과 62건 처리시간 0.022초

Fatigue Strength and Fracture Behaviour of CHS-to-RHS T-Joints Subjected to Out-of-Plane Bending

  • Bian, Li-Chun;Lim, Jae-Kyoo;Kim, Yon-Jig
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.207-214
    • /
    • 2003
  • The fatigue behaviour of six different hollow section T-joints subjected to out-of-plane bending moment was investigated experimentally using scaled steel models. The joints had circular brace members and rectangular chord members. Hot spot stresses and the stress concentration factors. (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The test results have been statistically evaluated, and show that the experimental SCF values for circular-to-rectangular (CHS-to-RHS) hollow section joints were found to be below those of circular-to-circular (CHS-to-CHS) hollow section joints. The fatigue strength, referred to experimental hot spot stress, was in reasonably good agreement with referred fatigue design codes for tubular joints.

스테인리스 각형강관기둥의 최대내력 (The Maximum Strength of Stainless Steel Rectangular Hollow Section Columns and Beam-Columns)

  • 이명재;김희동
    • 한국강구조학회 논문집
    • /
    • 제17권1호통권74호
    • /
    • pp.73-82
    • /
    • 2005
  • 본 논문은 스테인리스강이 건축구조용으로 이용될 때 중심압축재와 기둥의 최대내력을 수치해석으로 조사한 것이다. STS304의 소재인장시험결과로부터 응력-변형도 관계를 모델화하여 최대내력에 미치는 영향을 조사하였으며 강구조 한계상태설계기준식과의 비교를 시도하였다. 스테인리스강을 건축구조용으로 사용하기 위해서는 별도의 설계기준식이 필요하다는 점이 확인되었다.

구형 중공단면을 갖는 원호아치의 자유진동 해석 (Free Vibration Analysis of Circular Arches with Rectangular Hollow Section)

  • 이태은;이병구;박광규;윤희민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.50-53
    • /
    • 2008
  • The differential equations governing free vibrations of the elastic arches with rectangular hollow section are derived in polar coordinates, in which the effect of rotatory inertia is included. Natural frequencies is computed numerically for circular arches with both clamped ends and both hinged ends. The lowest four natural frequency parameters are reported, with the rotatory inertia, as functions of three non-dimensional system parameters: the breadth ratio, the thickness ratio and the shape ratio.

  • PDF

Fatigue Fracture Behaviour of Hollow Section Joints

  • Lichun Bian;Lim, Jae-Kyoo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 추계학술발표대회 개요집
    • /
    • pp.281-284
    • /
    • 2001
  • Fatigue behaviour of eight different hollow section T-joints was investigated experimentally using scaled steel models. The joints had circular brace members and rectangular chords (CRHS). Hot spot stresses and the stress concentration factors (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The experimental SCF values for CRHS joints were found to be between those of circular-to-circular (CCHS) and rectangular-to-rectangular (RRHS) hollow section joints. The fatigue strength referred to experimental hot spot stress was in reasonably good agreement with current fatigue design codes for tubular joints.

  • PDF

Cross-section classification of elliptical hollow sections

  • Gardner, L.;Chan, T.M.
    • Steel and Composite Structures
    • /
    • 제7권3호
    • /
    • pp.185-200
    • /
    • 2007
  • Tubular construction is widely used in a range of civil and structural engineering applications. To date, the principal product range has comprised square, rectangular and circular hollow sections. However, hot-rolled structural steel elliptical hollow sections have been recently introduced and offer further choice to engineers and architects. Currently though, a lack of fundamental structural performance data and verified structural design guidance is inhibiting uptake. Of fundamental importance to structural metallic design is the concept of cross-section classification. This paper proposes slenderness parameters and a system of cross-section classification limits for elliptical hollow sections, developed on the basis of laboratory tests and numerical simulations. Four classes of cross-sections, namely Class 1 to 4 have been defined with limiting slenderness values. For the special case of elliptical hollow sections with an aspect ratio of unity, consistency with the slenderness limits for circular hollow sections in Eurocode 3 has been achieved. The proposed system of cross-section classification underpins the development of further design guidance for elliptical hollow sections.

단면적이 일정한 직사각형 중공단면을 갖는 아치의 자유진동 (Free Vibrations of Arches with Rectangular Hollow Section having Constant Area)

  • 이태은;이병구;박광규
    • 한국전산구조공학회논문집
    • /
    • 제21권4호
    • /
    • pp.357-364
    • /
    • 2008
  • 본 논문은 단면적이 일정한 직사각형 중공단면을 갖는 아치의 자유진동에 관한 연구이다. 아치의 자유진동을 지배하는 미분방정식을 극좌표계에서 유도하였으며, 이 미분방정식에는 회전관성효과를 고려하였다. 본 연구에서는 원호아치에 비해 구조적 안정성이 우수한 포물선형 아치를 대상아치의 선형으로 결정하였으며, 고정-고정, 고정-회전, 회전-회전의 단부조건을 고려하였다. 미분방정식을 효율적으로 해석하여 정확한 고유진동수를 산정할 수 있는 수치해석 알고리즘을 개발하고, 문헌과 본 연구의 결과를 비교하여 본 연구에서 유도된 이론식 및 수치해석 과정의 타당성을 검증하였으며, 단면폭비, 두께비 및 형상비 등과 같은 제 변수 변화에 따른 무차원 고유진동수의 변화를 고찰하였다.

Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression

  • Razavian, Leila;Naghipour, Morteza;Shariati, Mahdi;Safa, Maryam
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.145-156
    • /
    • 2020
  • There are separate merits and demerits to wood and steel. The combination of wood and steel as a compound section is able to improve the properties of both and ultimately increase their final bearing capacity. The composite cross-section made of steel and wood has higher hardness while showing more ductility and the local buckling of steel is delayed or completely prevented. The purpose of this study is to investigate the behavior of composite columns enclosed in wooden logs and the hollow sections of steel that will be examined in a laboratory environment under the axial load to determine the final bearing capacity and sample deformation. In terms of methodology, steel sheet and carbon fiber reinforced polymer sheet (FRP) are tested to construct hollow rectangular sections and reinforce timber. Besides, the method of connecting hollow sections and timber including glue and screw has been also investigated. As a result, timber lumber enclosed with carbon fiber-reinforced polymer sheets in which fibers are horizontally located at 90° are more resistant with better ductility.

Finite-element analysis and design of aluminum alloy RHSs and SHSs with through-openings in bending

  • Ran Feng;Tao Yang;Zhenming Chen;Krishanu Roy;Boshan Chen;James B.P. Lim
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.353-366
    • /
    • 2023
  • This paper presents a finite-element analysis (FEA) of aluminum alloy rectangular hollow sections (RHSs) and square hollow sections (SHSs) with circular through-openings under three-point and four-point bending. First, a finite-element model (FEM) was developed and validated against the corresponding test results available in the literature. Next, using the validated FE models, a parametric study comprising 180 FE models was conducted. The cross-section width-to-thickness ratio (b/t) ranged from 2 to 5, the hole size ratio (d/h) ranged from 0.2 to 0.8 and the quantity of holes (n) ranged from 2 to 6, respectively. Third, results obtained from laboratory test and FEA were compared with current design strengths calculated in accordance with the North American Specifications (NAS), the modified direct strength method (DSM) and the modified Continuous strength method (CSM). The comparison shows that the modified CSM are conservative by 15% on average for aluminum alloy RHSs and SHSs with circular through-openings subject to bending. Finally, a new design equation is proposed based on the modified CSM after being validated with results obtained from laboratory test and FEA. The proposed design equation can provide accurate predictions of flexural capacities for aluminum alloy RHSs and SHSs with circular through-openings.

Fatigue Strength of CRHS Joints Subjected to Out-of-plane Bending

  • Bian, Li-Chun;Jeon, Yang-Bae;Yoon, Ho-Cheol;Lim, Jae-Kyoo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 춘계학술발표대회 개요집
    • /
    • pp.178-181
    • /
    • 2002
  • This is a partial report of the investigation of fatigue behaviour of hollow section T-joints with circular brace members and rectangular chord members (CRHS). Hot spot stresses and the stress concentration factors (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The experimental SCF values for CRHS joints were found to be below those of circular-to-circular (CCHS) and rectangular-to-rectangular (RRHS) hollow section joints. The fatigue strength referred to experimental hot spot stress was in reasonably good agreement with current fatigue design codes for tubular joints.

  • PDF

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.