• Title/Summary/Keyword: rectangular bodies

Search Result 39, Processing Time 0.023 seconds

Wind flow around rectangular obstacles with aspect ratio

  • Lim, Hee-Chang
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.299-312
    • /
    • 2009
  • It has long been studied about the flow around bluff bodies, but the effect of aspect ratio on the sharp-edged bodies in thick turbulent boundary layers is still argued. The author investigates the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$ in mm) placed in a deep turbulent boundary layer. The study is aiming to identify the extant Reynolds number independence of the rectangular bodies and furthermore understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the shape of bodies is changed, responsible for producing extreme suction pressures around the bluff bodies. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of 24,000, 46,000 and 67,000, and large enough that the mean boundary layer flow is effectively Reynolds number independent. The experiment includes wind tunnel work with the velocity and surface pressure measurements. The results show that the generation of the deep turbulent boundary layer in the wind tunnel and the surface pressure around the bodies were all independent of Reynolds number and the longitudinal length, but highly dependent of the transverse width.

Pressure distribution on rectangular buildings with changes in aspect ratio and wind direction

  • Lee, Young Tae;Boo, Soo Ii;Lim, Hee Chang;Misutani, Kunio
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.465-483
    • /
    • 2016
  • This study aims to enhance the understanding of the surface pressure distribution around rectangular bodies, by considering aspects such as the suction pressure at the leading edge on the top and side faces when the body aspect ratio and wind direction are changed. We carried out wind tunnel measurements and numerical simulations of flow around a series of rectangular bodies (a cube and two rectangular bodies) that were placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equations with the typical two-equation model (i.e., the standard $k-{\varepsilon}$ model) were solved, and the results were compared with the wind tunnel measurement data. Regarding the turbulence model, the results of the $k-{\varepsilon}$ model are in overall agreement with the experimental results, including the existing data. However, because of the blockage effects in the computational domain, the pressure recovery region is underpredicted compared to the experimental data. In addition, the $k-{\varepsilon}$ model sometimes will fail to capture the exact flow features. The primary emphasis in this study is on the flow characteristics around rectangular bodies with various aspect ratios and approaching wind directions. The aspect ratio and wind direction influence the type of wake that is generated and ultimately the structural loading and pressure, and in particular, the structural excitation. The results show that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and side faces of the cube. In addition, the transverse width has a substantial effect on the variations in surface pressure around the bodies, while the longitudinal length has less influence compared to the transverse width.

Rocking response of unanchored rectangular rigid bodies to simulated earthquakes

  • Aydin, Kamil
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.343-362
    • /
    • 2004
  • Rocking response of rigid bodies with rectangular footprint, freely standing on horizontal rigid plane is studied analytically. Bodies are subjected to simulated single component of horizontal earthquakes. The effect of baseline correction, applied to simulated excitations, on the rocking response is first examined. The sensitiveness of rocking motion to the details of earthquakes and geometric properties of rigid bodies is investigated. Due to the demonstrated sensitivity of rocking response to these factors, prediction of rocking stability must be made in the framework of probability theory. Therefore, using a large number of simulated earthquakes, the effects of duration and shape of intensity function of simulated earthquakes on overturning probability of rigid bodies are studied. In the case when a rigid body is placed on any floor of a building, the corresponding probability is compared to that of a body placed on the ground. For this purpose, several shear frames are employed. Finally, the viability of the energy balance equation, which was introduced by Housner in 1963 and widely used by nuclear power industry to estimate the rocking stability of bodies, is evaluated. It is found that the equation is robust. Examples are also given to show how this equation can be used.

Numerical Analysis on Flow Phenomena of the Wake behind the Rectangular Obstacle in the Channel (관내 사각지주 후류의 유동현상에 대한 수치해석)

  • Min Yeong-Ui;Kim Yeon-Soo;Kim You-Gon
    • Journal of computational fluids engineering
    • /
    • v.6 no.2
    • /
    • pp.22-31
    • /
    • 2001
  • The two-dimensional unsteady incompressible viscous flow behind rectangular bluff bodies between two parallel plates was analyzed numerically. The steady state flow and the vortex flow behind rectangular bluff bodies in the channel were investigated for two regimes i.e., the laminar(Re = 100, 300, 500) and the turbulent flows(Re = 10⁴∼10/sup 6/). The vortex shedding was generated by a physical disturbance(6%) numerically imposed at the rear of the bluff bodies for a short time. It was observed that the perturbed flow became periodic after a transient period. And in the case of unsteady inflow, the sinusoidal pulsatile flow was applied as the inlet condition in the turbulent flow of Reynolds number of 1.0×10/sup 5/. FLUENT code was employed to solve the problems. The power-law scheme was used to get stable linearized equations and the PISO algorithm was applied to finding the solution of them.

  • PDF

Study on the Generation of Turbulent Boundary Layer in Wind Tunnel and the Effect of Aspect Ratio of a Rectangular Obstacle (풍동 내 난류 경계층 생성과 육면체의 형상 변화에 따른 표면 압력 변화 연구)

  • LimM, Hee-Chang;Jeong, Tae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.791-799
    • /
    • 2008
  • We investigate the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$) placed in a deep turbulent boundary layer. The study is aiming to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the flow is normal, which is responsible for producing extreme suction pressures on the roof. The experiment includes wind tunnel work by using HWA (Hot-Wire anemometry) and pressure transducers. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of $2.4{\times}10^4$, $4.6{\times}10^4$ and $6.7{\times}10^4$, and large enough that the mean flow is effectively Reynolds number independent. The results include the measurements of the growth of the turbulent boundary layer in the wind tunnel and the surface pressure around the bodies.

Elasto-plastic Analysis of Circular Cylindrical Shell under Horizontal Load by Rigid-bodies Spring Model

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.87-92
    • /
    • 2006
  • This paper is a study on the experiment and elasto-plastic discrete limit analysis of reinforced concrete circular cylindrical shell by the rigid-bodies spring model. In the rigid bodies-spring model, each collapsed part or piece of structures at the limiting state of loading is assumed to behave like rigid bodies. The present author propose new discrete elements for elasto-plastic analysis of cylindrical shell structures, that is, a rectangular-shaped cylindrical element and a rhombus-shaped cylindrical element for the improvement and expansion of this rigid-bodies spring model. In this study, it is proposed how this rigid element-bodies spring model can be applied to the elasto-plastic discrete limit analysis of cylindrical shell structures. Some numerical results of elasto-plastic discrete limit analysis and experimental results such as the curve of load-displacement and the yielding and fracturing pattern of circular cylindrical shell under horizontal load are shown.

  • PDF

Flow solutions around rectangular cylinders: The question of spatial discretization

  • Corsini, Roberto;Angeli, Diego;Stalio, Enrico;Chibbaro, Sergio;Cimarelli, Andrea
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.151-159
    • /
    • 2022
  • The aerodynamics of blunt bodies with separation at the sharp corner of the leading edge and reattachment on the body side are particularly important in civil engineering applications. In recent years, a number of experimental and numerical studies have become available on the aerodynamics of a rectangular cylinder with chord-to-thickness ratio equal to 5 (BARC). Despite the interest in the topic, a widely accepted set of guidelines for grid generation about these blunt bodies is still missing. In this work a new, well resolved Direct Numerical Simulation (DNS) around the BARC body at Re=3000 is presented and its results compared to previous DNSs of the same case but with different numerical approaches and mesh. Despite the simulations use different numerical approaches, mesh and domain dimensions, the main discrepancies are ascribed to the different grid spacings employed. While a more rigorous analysis is envisaged, where the order of accuracy of the schemes are kept the same while grid spacings are varied alternately along each spatial direction, this represents a first attempt in the study of the influence of spatial resolution in the Direct Numerical Simulation of flows around elongated rectangular cylinders with sharp corners.

Some explicit solutions to plane equilibrium problem for no-tension bodies

  • Lucchesi, Massimiliano;Zani, Nicola
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.295-316
    • /
    • 2003
  • A method is presented to integrate explicitly certain equilibrium problems for no-tension bodies, in absence of body forces and under the assumption that two of the principal stresses are everywhere null. The method is exemplified in the case of rectangular panels, clamped at their bottoms and loaded at their tops.

A Study for Estimation of the Surface Temperature Rise Using the FVM and Semi-Infinite Solid Analysis (FVM과 반무한체 해석을 이용한 표면온도예측에 관한 연구)

  • 김태완;이상돈;조용주
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.389-395
    • /
    • 2002
  • The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. The calculation of the surface temperature at a sliding contact interface has been an interesting and important subject for tribologist. Temperature analyses were usually performed under the consideration contacted two bodies as semi-infinite. But the analysis was difficulty in being applied to finite body and considering the boundary condition. In this study, contact temperature rise of two finite bodies and surfaces due to frictional heating under the rectangular and the circular sliding contact is calculated. Heat partition factor is calculated using semi-infinite solid analysis and the temperature of the finite bodies is calculated using FVM. It will be shown that Most frictional heat in the fore part of contact region for sliding direction is conducted into body that has a moving heat source and the site of the maximum temperature rise moves to the opposite direction of sliding during sliding.

Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence

  • Keerthana, M.;Harikrishna, P.
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.301-328
    • /
    • 2017
  • Multivariate fluctuating pressures acting on a 2:1 rectangular section (2-D) with dimensions of 9 cm by 4.5 cm has been studied using wind tunnel experiments under uniform and smooth flow condition for various angles of wind incidence. Based on the variation of mean pressure coefficient distributions along the circumference of the rectangular section with angle of wind incidence, and with the aid of skin friction coefficients, three distinct flow regimes with two transition regimes have been identified. Further, variations of mean drag and lift coefficients, Strouhal number with angles of wind incidence have been studied. The applicability of Universal Strouhal number based on vortex street similarity of wakes in bluff bodies to the 2:1 rectangular section has been studied for different angles of wind incidence. The spatio-temporal correlation features of the measured pressure data have been studied using Proper Orthogonal Decomposition (POD) technique. The contribution of individual POD modes to the aerodynamic force components, viz, drag and lift, have been studied. It has been demonstrated that individual POD modes can be associated to different physical phenomena, which contribute to the overall aerodynamic forces.