DOI QR코드

DOI QR Code

Flow solutions around rectangular cylinders: The question of spatial discretization

  • Received : 2021.04.07
  • Accepted : 2021.12.11
  • Published : 2022.01.25

Abstract

The aerodynamics of blunt bodies with separation at the sharp corner of the leading edge and reattachment on the body side are particularly important in civil engineering applications. In recent years, a number of experimental and numerical studies have become available on the aerodynamics of a rectangular cylinder with chord-to-thickness ratio equal to 5 (BARC). Despite the interest in the topic, a widely accepted set of guidelines for grid generation about these blunt bodies is still missing. In this work a new, well resolved Direct Numerical Simulation (DNS) around the BARC body at Re=3000 is presented and its results compared to previous DNSs of the same case but with different numerical approaches and mesh. Despite the simulations use different numerical approaches, mesh and domain dimensions, the main discrepancies are ascribed to the different grid spacings employed. While a more rigorous analysis is envisaged, where the order of accuracy of the schemes are kept the same while grid spacings are varied alternately along each spatial direction, this represents a first attempt in the study of the influence of spatial resolution in the Direct Numerical Simulation of flows around elongated rectangular cylinders with sharp corners.

Keywords

Acknowledgement

This work was granted access to the HPC resources of TGCC under the allocation 2020/21-A0092A12037 made by GENCI (Grand Equipement National de Calcul Intensif). We wish to acknowledge also the support of the Department of Engineering "Enzo Ferrari" of the University of Modena and Reggio Emilia through the action "FAR dipartimentale 2020/2021".

References

  1. Bartoli, G., Bruno, L., Cimarelli, A., Mannini, C., Patruno, L., Ricciardelli, F. and Salvetti, M.V. (2020), "BARC overview document", http://www.aniv-iawe.org/barc.
  2. Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: a computational study", J. Wind Eng. Ind. Aerod., 98, 263-276. https://doi.org/10.1016/j.jweia.2009.10.005.
  3. Bruno, L., Coste, N. and Fransos, D. (2012), "Simulated flow around a rectangular 5:1 cylinder: spanwise discretization effects and emerging flow features", J. Wind Eng. Ind. Aerod., 104, 203-215. https://doi.org/10.1016/j.jweia.2012.03.018.
  4. Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5:1 cylinder: an overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
  5. Cao, Y., Tamura, T. and Kawai, H. (2020), "Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder", Comput. Fluids, 196, 104320. https://doi.org/10.1016/j.compfluid.2019.104320.
  6. Chiarini, A. and Quadrio, M. (2021), "The turbulent flow over the BARC rectangular cylinder: a DNS study", Flow, Turbulence Combustion. 1-25. https://doi.org/10.1007/s10494-021-00254-1
  7. Cimarelli, A., Leonforte, A. and Angeli, D. (2018a), "Direct numerical simulation of the flow around a rectangular cylinder at a moderately high Reynolds number", J. Wind Eng. Ind. Aerod., 174, 39-49. https://doi.org/10.1016/j.jweia.2017.12.020.
  8. Cimarelli, A., Leonforte, A. and Angeli, D. (2018b), "On the structure of the self-sustaining cycle in separating and reattaching flows", J. Fluid Mech., 857, 907-936. https://doi.org/10.1017/jfm.2018.772.
  9. Cimarelli, A., Leonforte, A. De Angelis, E., Crivellini, A. and Angeli, D. (2019a), "On negative turbulence production phenomena in the shear layer of separating and reattaching flows", Phys. Letters A, 383, 101-1026. https://doi.org/10.1016/j.physleta.2018.12.026.
  10. Cimarelli, A., Leonforte, A., De Angelis, E., Crivellini, A. and Angeli, D. (2019), "Resolved dynamics and subgrid stresses in separating and reattaching flows", Phys. Fluids, 31, 095101. https://doi.org/10.1063/1.5110036.
  11. Cimarelli, A., Franciolini, M. and Crivellini, A. (2020), "Numerical experiments in separating and reattaching flows", Phys. Fluids, 32, 095119. https://doi.org/10.1063/5.0019049.
  12. Fischer, P.F. (1997), "An overlapping schwarz method for spectral element solution of the incompressible navier-stokes equations", J. Comput. Phys., 133, 84-101. https://doi.org/10.1006/jcph.1997.5651.
  13. Fischer, P.F and Mullen, J. (2001), "Filter-based stabilization of spectral element methods", Comptes Rendus de l'Academie des Sciences - Series I - Mathematics, 332, 265-270. https://doi.org/10.1016/S0764-4442(00)01763-8.
  14. Fischer, P.F., Lottes, J.W. and Kerkemeier, S.G. (2008), Nek5000 http://nek5000.mcs.anl.gov.
  15. Hosseini, S.M., Vinuesa, R., Schlatter, P., Hanifi, A. and Henningson, D.S. (2016), "Direct numerical simulation of the flow around a wing section at moderate Reynolds number", Int. J. Heat Fluid Flow, 61, 117-128. https://doi.org/10.1016/j.ijheatfluidflow.2016.02.001.
  16. Issa, R.I. (1986), "Solution of the implicitly discretised fluid flow equations by operator-splitting", J. Comput. Phys., 62, 40-65. https://doi.org/10.1016/0021-9991(86)90099-9.
  17. Karniadakis, G.E. and Sherwin, S.J. (1999), Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford University Press.
  18. Komen, E.M.J., Camilo, L.H., Shams, A., Geurts, B.J. and Koren, B. (2017), "A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows", J. Comp. Phys., 345, 565-595. https://doi.org/10.1016/j.jcp.2017.05.030.
  19. Mannini, C., Soda, A. and Schewe, G. (2010), "Unsteady RANS modelling of flow past a rectangular cylinder: investigation of Reynolds number effects", Comp. & Fluids., 39, 1609-1624. https://doi.org/10.1016/j.compfluid.2010.05.014.
  20. Mannini, C., Marra, A.M., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5:1 cross section", J. Wind Eng. Ind. Aerodyn., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001.
  21. Mariotti, A., Salvetti, M.V., Omrani, P.S. and Witteveen, J.A.S. (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5:1 cylinder", Comp. Fluids, 136, 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.
  22. Mariotti, A., Siconolfi, L. and Salvetti, M.V. (2017), "Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5:1 rectangular cylinder", Eur. J. Mech.-B/Fluids, 62, 149-165. https://doi.org/10.1016/j.euromechflu.2016.12.008.
  23. Moin, P. and Mahesh, K. (1998), "Direct numerical simulation: a tool in turbulence research", Ann. Rev. Fluid Mech., 30, 539-578. https://doi.org/10.1146/annurev.fluid.30.1.539.
  24. Moore, D.M. and Amitay, M. (2021), "Production and migration of turbulent kinetic energy in bluff body shear layers", Int. J. Heat Fluid Flow, 88, 108716. https://doi.org/10.1016/j.ijheatfluidflow.2020.108716.
  25. Patera, A.T. (1984), "A spectral element method for fluid dynamics: laminar flow in a channel", J. Comput. Phys., 54, 468-488. https://doi.org/10.1016/0021-9991(84)90128-1.
  26. Alves Portela, F., Papadakis, G. and Vassilicos, J.C. (2017), "The turbulence cascade in the near wake of a square prism", Journal of Fluid Mechanics, 825, 315-352. https://doi.org/10.1017/jfm.2017.390.
  27. Ricci, M., Patruno, L., de Miranda, S. and Ubertini, F. (2017), "Flow field around a 5:1 rectangular cylinder using LES: influence of inflow turbulence conditions, spanwise domain size and their interaction", Comp. Fluids, 149, 181-193. https://doi.org/10.1016/j.compfluid.2017.03.010.
  28. Rocchio, B., Mariotti, A. and Salvetti, M.V. (2020), "Flow around a 5: 1 rectangular cylinder: Effects of upstream-edge rounding", J. Wind Eng. Ind. Aerodyn., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.
  29. Schewe, G. (2013), "Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1:5", J. Fluid & Struct., 39, 15-26. https://doi.org/10.1016/j.jfluidstructs.2013.02.013.
  30. Trias, F.X., Gorobets, A. and Oliva, A. (2015), "Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study", Comput. Fluids, 123, 87-98. https://doi.org/10.1016/j.compfluid.2015.09.013.
  31. Yang, Y., Li, M., Su, Y. and Sun, Y. (2019), "Aerodynamic admittance of a 5:1 rectangular cylinder in turbulent flow", J. Wind Eng. Ind. Aerod., 189, 125-134. https://doi.org/10.1016/j.jweia.2019.03.023.
  32. Weller, H.G., Tabor, G., Jasak, H. and Fureby, C. (1998), "A tensorial approach to computational continuum mechanics using object-oriented techniques", Comput. Phys., 12, 620-631. https://doi.org/10.1063/1.168744.
  33. Zhang, Z. and Xu, F. (2020), "Spanwise length and mesh resolution effects on simulated flow around a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 202, 104186. https://doi.org/10.1016/j.jweia.2020.104186.