• Title/Summary/Keyword: recovery cost

Search Result 608, Processing Time 0.031 seconds

A Sensitive, Efficient, and Cost-Effective Method to Determine Rotigotine in Rat Plasma Using Liquid-Liquid Extraction (LLE) and LC-MRM

  • Kim, Ji Seong;Jang, Yong Jin;Kim, Jin Hee;Kim, Jin Hwan;Seo, Jae Hee;Park, Il-Ho;Kang, Myung Joo;Choi, Yong Seok
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.146-151
    • /
    • 2022
  • Rotigotine (RTG) is a non-ergot dopamine agonist used to manage the early stage of Parkinson's disease (PD) as transdermal patch. However, the poor medication compliance of PD patients and skin issues related with repeated applications of RTG patches lead to the search for alternative formulations and it also requires appropriate analytical methods for their in vivo evaluation. Thus, here, a sensitive, efficient, and cost-effective method to determine RTG in rat plasma using liquid-liquid extraction (LLE) and multiple reaction monitoring was developed. The use of 20 µL of rat plasma for sample treatment, 8-OH-DPAT as the internal standard, and methyl tert-butyl ether as the LLE solvent in the present method gives it advantages over previous methods for the analysis of RTG in biological samples. The good analytical performance of the developed method was confirmed in specificity, linearity (the coefficient of determination ≥0.999 within 0.1-100 ng/mL), sensitivity (the lower limit of quantitation at 0.1 ng/mL), accuracy (81.00-115.05%), precision (≤10.75%), and recovery (81.00-104.48%) by following the FDA guidelines. Finally, the applicability test of the validated method to the in vivo evaluation of a RTG formulation showed that the present method is the only method which can be accurately applied to that longer than 24 hours, critical for the development of formulations with reduced dosing frequencies. Therefore, the present method could contribute to the development of new RTG formulations helpful to people suffering from PD.

Pig meat production in the European Union-27: current status, challenges, and future trends

  • G. G. Mateos;N. L. Corrales;G. Talegon;L. Aguirre
    • Animal Bioscience
    • /
    • v.37 no.4_spc
    • /
    • pp.755-774
    • /
    • 2024
  • The main objective of this study was to present data on the current situation and future trends of pig meat production in the European Union-27 (EU). Pig production has played an important social and economic role for centuries in many states of the EU. In 2022, pig meat production in the EU reached 23 M tons, which represented 21% of total production worldwide. The two key reasons that justify such amount of pork produced, are the acceptance and high consumption of the meat by the local population and the high quality of the meat produced which facilitated pork export. However, current data show a reduction in pork production for the last three years, as a consequence of a series of events that include i) problems with the chain of ingredients supply, ii) uncontrolled increase in African Swine Fever (ASF) outbreaks, iii) fast recovery of pig production in China, iv) increasing concerns by the rural population on the high cost to meet future requirements of the EU legislation on farm management, environmental sustainability and animal welfare, v) increased cost of all inputs involved in pig production and vi) limited interest of the new farmer generation to work on the pig sector. Consequently, pork production is expected to decrease in the EU for the next years, although sales will be maintained at a relative high level because pork is the meat preferred by local consumers in most EU countries. In order to maintain the favourable position of the pork industry in the near future, strategies to implement include: i) maintain the quality of the meat destinated to export markets, ii) improve the control of outbreaks of ASF and other swine diseases, iii) implementation of technological innovations to improve working conditions making more attractive to work in the pork sector of the food chain to the new generation of farmers and workers.

Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges

  • Gurung, Anup;Oh, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.410-420
    • /
    • 2012
  • The heavy reliance on fossil fuels, especially oil and gas has triggered the global energy crisis. Continued use of petroleum fuels is now widely recognized as unsustainable because of their depleting supplies and degradation to the environment. To become less dependent on fossil fuels, current world is shifting paradigm in energy by developing alternative energy sources mainly through the utilization of renewable energy sources. In particular, bioenergy recovery from wastes with the help of microorganism is viewed as one of the promising ways to mitigate the current global warming crisis as well as to supply global energy. It has been proved that microorganism can generate power by converting organic matter into electricity using microbial fuel cells (MFCs). MFC is a bioelectrochemical device that employs microbes to generate electricity from bio-convertible substrate such as wastewaters including municipal solid waste, industrial, agriculture wastes, and sewage. Sustainability, carbon neutral and generation of renewable energy are some of the major features of MFCs. However, the MFC technology is confronted with a number of issues and challenges such as low power production, high electrode material cost and so on. This paper reviews the recent developments in MFC technology with due consideration of electrode materials used in MFCs. In addition, application of biocathodes in MFCs has been discussed.

Modeling of Petri-Net for an Simulation of Cut Slope Test on GIS (GIS 기반 절토 사면 시뮬레이션을 위한 Petri-Net 모델링)

  • Lee, Hong-Ro;Lee, Jae-Bong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • Due to a heavy rain resulted from the global environmental change, collapse accidents happen annually and it is a tendency to increase the loss of life and economy. Thus, measures for the collapse of slope are required. If the slope can be simulated before cutting, the collapse can be predicted, and also the accident of the collapse can be minimized at the cost of recovery. This paper presents a simulation method of a slope which is important in cutting. The method is modeling and designing using Petri-Net and is implemented in the Windows XP using Arc GIS. Therefore, by means of cutting and reclamation based on GIS, this paper can contribute to saving a lot of time and money.

Analysis of the Case of the Rehabilitation Quarrying After Using Quarrying Site (채석 완료 후 부지 활용성을 고려한 복구사례 분석)

  • Park, Jae-Hyeon;Lee, Joon-Woo;Park, Chong-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.152-162
    • /
    • 2010
  • This study provides preliminary data to support the need for appropriate and thorough restoration of quarries through investigating both domestic and overseas cases of sites that were restored in environment-friendly ways to make them re-usable after extraction. In cases of areas where it is difficult to restore the cut slope, putting it to other uses such as engraving buddhist images would be helpful to reduce the restoration cost and enhance the utilization of the slope. Phased land use conversion after exploitation needs to be considered in advance; for example, the location and size of the quarry should be determined according to the pre-planned use or development of the site. Considering the circumstances in the country, serious consideration should be given to methods that allow the restoration or recovery of the damaged sites to be completed in short periods of time. Quarry restoration needs to be approached from the view of ecological restoration and if a site is deemed to be usable for another purpose, land use conversion should be considered to enhance the utilization.

The Study on the Energy self-sufficiency and Economic Analysis of KIER Zero Energy Solar House (제로에너지 솔라하우스(KIER ZeSH)의 에너지 자립도 및 경제성 분석)

  • Jeong, Seonyeong;Baek, Namchoon;Yoo, Changkyoon;Yoon, Eungsang;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • In this study, the energy and economic analysis of KIER Zero Energy Solar House (KIER ZeSH) was carried out. KIER ZeSH was designed and constructed in the end of 2009 for the purpose of more than 70% energy self-sufficiency in total load as well as less than 20% of additional construction cost. The several building energy conservation technologies like as super insulation, high performance window, wast heat recovery system, etc and renewable energy system. The renewable heating and cooling system is a kind of solar thermal system combined with geo-source heat pump as a back-up device. The capacity of 3.15kW solar BIPV system was also installed on the roof. The measurement by monitering system of ZeSH was conducted for one year from November 2009 to October 2010. The energy self-sufficiency and economic analysis were conducted based on the this monitering result. As a result, the energy self sufficiency is about 83% which is higher than that of the target and the payback period is 11 years.

  • PDF

A Design of Optimal Masks in Hadamard Transform Spectrometers (하다마드 분광계측기의 마스크 설계)

  • 박진배
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.239-248
    • /
    • 1995
  • The method of increasing signal to noise ratio (SNR) in a Hadamard transform spectrometer (HTS) is multiplexing. The multiplexing is executed by a mask. Conventional masks are mechanical or electro-optical. A mechanical mask has disadvantages of jamming and misalignment. A stationary electro-optical mask has a disadvantage of information losses caused by spacers which partition mask elements. In this paper, a mixed-concept electro-optical mask (MCEOM) is developed by expanding the length of a spacer to that of lon-off mask element. An MCEOM is operated by stepping a movable mask. 2N measurements are required for N spectrum estimates. The average mean square error (AMSE) using MCEQM is equal to that using a stationary electro-optical mask without spacers for large N. The cost of manufacturing an MCEOM is lower than that of producing a conventional electro-optical mask because an MCEOM needs only (N + 1)/2 on-off mask elements whereas the con¬ventional electro-optical mask needs N on-off mask elements. There are no information losses in the spectrometers having an MCEOM.

  • PDF

A Study on the Effect of Reverse Logistics Capability on Profits and Collaboration Satisfaction (회수물류역량이 수익과 협력만족에 미치는 영향에 관한 연구)

  • Lee, Sang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.4
    • /
    • pp.1-5
    • /
    • 2013
  • This study aims to define the positive relationship among reverse logistics capability, firm's profits, and collaboration satisfaction. In the previous literatures about reverse logistics mainly focus on the importance of relationship between manufacturers and customers, but less likely on the potential positive effects of between collative firms. To implicate reverse logistics gives firms assets recovery, cost reduction through recycling which affects greater profits. Reverse logistics capability would be positively related with increasing profits for collaboration and satisfaction between partners.

Case Studies for Optimizing Heat Exchanger Networks in Steam-assisted Gravity Drainage Oil Sands Plant (SAGD 법을 이용한 오일샌드 플랜트 열교환기망 최적화를 위한 사례연구)

  • Cho, Eunbi;Jeong, Moon;Kang, Choonhyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.19-24
    • /
    • 2016
  • Oil sands are a mixture of sand, clay, and a high-viscosity petroleum called bitumen. Steam-Assisted Gravity Drainage (SAGD) is the most viable and environmentally safe recovery technology for extracting bitumen. It extracts the viscosity-lowered bitumen by high pressure, high temperature steam injected into the bitumen reservoir. The steam is produced at the Central Processing Facility (CPF). Typically, more than 90% of the energy consumed in producing bitumen are used to generate the steam. Fuels are employed in the process, which cause economic and environmental problems. This paper explores the retrofit of heat exchanger network to reduce the usage of hot and cold utilities. The hot and cold utilities are reduced respectively 6% and 37.3% which in turn resulted in 5.3% saving of total annual cost by improving the existing heat exchanger network of the CPF.

Performance Analysis of Plate-and-Frame Forward Osmosis Membrane Module for Concentrating High Salinity Wastewater (고염도 폐수 농축을 위한 평판형 정삼투막 모듈의 성능 분석)

  • Kim, Yu Chang;Lee, Sungyun;Park, Sang-Jin;Kim, Han Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.68-74
    • /
    • 2016
  • Hydraulic fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates larger volumes of contaminated wastewater with high salinity. It is critical to treat and reuse the O&G wastewater in a cost-effective and environmentally sound manner for sustainable industrial development and for meeting stringent regulations. Recently, forward osmosis (FO) has been examined if it is a promising solution for treatment and desalination of complex industrial streams and especially fracturing flowback and produced waters. In the present study, the performances of a plate-and-frame FO membrane element and a module (6 elements combined in series) were investigated for concentrating high TDS wastewater. An FO module has achieved up to 64 % water recovery (i.e., concentration factor of 2.76) from 10,000 ppm wastewaters and can concentrate feed streams salinities to greater than 30,500 ppm.