• Title/Summary/Keyword: reconnaissance

Search Result 362, Processing Time 0.028 seconds

UAV Path Creation Tool for Wildfire Reconnaissance in CPS Environment (CPS환경에서 산불 정찰을 위한 무인기 비행경로 생성 도구)

  • Ji-Won Jeong;Chang-Hui Bae;EuTeum Choi;SeongJin Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.327-333
    • /
    • 2023
  • Existing studies on the UAV (Unmanned Aerial Vehicle)-based CPS (Cyber Physical System) environment lack forest fire monitoring and forest fire reconnaissance using real-world UAVs. So, it is necessary to monitor forest fires early through CPS based on real-world UAVs with high reliability and resource management efficiency. In this paper presents an MFG (Misstion File Generater) that automatically generates a flight path of an UAV for forest fire monitoring in a CPS environment. MFG generates flight paths based on a hiking trail with a high fire probability due to a true story of an entrant. We have confirmed that the flight path generated by MFG can be applied to the UAV. Also, we have verified that the UAV flies according to the flight path generated by MFG in simulation, with a negligible error rate.

Development of Fracture-Type Protector for a Launching Reconnaissance Robot (발사형 정찰로봇을 위한 파단형 보호체 개발)

  • Kang, Bong-Soo;Cho, Yoon-Ho;Choi, Jeong-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1473-1478
    • /
    • 2012
  • This paper presents the development of a fracture-type protector for carrying a reconnaissance robot to a remote target area. Instead of a conventional unlocking mechanism, a separation method based on the fracture of assembled parts was implemented in the proposed lightweight protector in order to improve the feasibility for a real battlefield. Simulations using the finite element model of the protector and the robot were performed to verify the fracture under the given loading conditions, and shock experiments using a drop table were performed to calculate shock transmittance through the protector to the robot. Several field tests for a 100-m flight proved that the proposed scenario (launching, flying, landing, and separation) was achieved successfully.

The Investigation of Mineral Distribution at Spirit Rover Landing Site: Gusev Crater by CRISM Hyperspectral data and Target Detection Algorithm (CRISM 초분광 영상과 표적 탐지 알고리즘을 이용한 Spirit 로버 탐사 지역: Gusev Crater의 광물 분포 조사)

  • Baik, Hyun-Seob;Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.403-412
    • /
    • 2016
  • Compact Reconnaissance Imaging Spectrometer for Mars(CRISM) is 489-band hyperspectral camera of Mars Reconnaissance Orbiter(MRO) that provided data used on many mineral researches over Martian surface. For the detection of minerals in planet, mineral index using a few spectral bands have been used. In this study, we applied Matched Filter and Adaptive Cosine Estimator(ACE) target detection algorithm on CRISM data over Gusev Crater: landing site of Spirit(Mars Exploration Rover A) to investigate its mineral distribution. As a result, olivine, pyroxene, magnetite, etc. is detected at Gusev Crater's Columbia Hills. These results are corresponding to the Spirit rover's field survey result. It is expected that hyperspectral target detection algorithms can be used as effective and easy to use method for the detection and mapping of surface minerals in planet.

Experimental Study on the Cooling Characteristics of an Environmental Control System for Avionic Reconnaissance Equipment (항공정찰장비용 환경제어시스템의 냉각특성에 관한 실험적 연구)

  • Kang, Hoon;Park, Hyung-Pil;Lee, Eung-Chan;Kim, Yong-Chan;Chi, Yong-Nam;Choi, Hee-Ju;Byeon, Young-Man;Kim, Young-Jin;Oh, Kwang-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.519-526
    • /
    • 2009
  • Environmental control system is adopted to control the thermal load from the avionic equipment in the reconnaissance pod which is mounted under a fighter aircraft, undergoing large and rapid environmental changes with the variations of flight altitude and velocity. In this study, an environmental control system was designed and built by adopting vapor compression cycle using R-124. The cooling performance characteristics of the system were measured varying operating parameters: thermal load in the pod, air mass flow rate through evaporator, condenser inlet air temperature, and air mass flow rate through condenser. The effects of the experimental parameters on the system performance were analyzed based on the experimental results. The problems on the designed system were also analyzed and the solutions were suggested to improve system efficiency and to obtain stable operation.

Temporary Satellite Constellation Design for the Ground Reconnaissance Mission (지상 정찰을 위한 임시 위성군집궤도 설계)

  • Kim, Hae-Dong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1112-1120
    • /
    • 2009
  • In this paper, the authors introduced a new approach to find the target orbits of each satellite in order to establish a temporary reconnaissance constellation mission to minimize the average revisit time (ART) while satisfying the constraint on fuel limit. Two distinct problems are dealt with: the first is to reconnoiter the local area with discriminating fuel constraint the second is to reconnoiter ground moving target with same fuel constraint. A preliminary effort in applying a genetic algorithm to those problems has also been demonstrated through simulation study. The results show that current ARTs of each mission are reduced by 41% and 42%, respectively, by relocating the orbit of each satellite. Naturally, the final result may depend on satellite orbits, sensor characteristics, allowable fuel cost, thruster capability, and maneuver strategies.

A Study on Vulnerability of Cyber Electronic Warfare and Analysis of Countermeasures for swarm flight of the NBC Reconnaissance Drones (화생방 정찰 드론의 군집비행 시 사이버전자전 취약점 및 대응방안 분석)

  • Kim, Jee-won;Park, Sang-jun;Lee, Kwang-ho;Jung, Chan-gi
    • Convergence Security Journal
    • /
    • v.18 no.2
    • /
    • pp.133-139
    • /
    • 2018
  • The 5 Game changer means the concepts of the army's operation against the enemy's asymmetric threats so that minimize damage to the public and leads to victory in war in the shortest time. A study of network architecture of Dronebot operation is a key study to carry out integrated operation with integrated C4I system by organically linking several drones battle groups through ICT. The NBC reconnaissance drones can be used instead of vehicles and humans to detect NBC materials and share situations quickly. However, there is still a lack of research on the swarm flight of the NBC reconnaissance drones and the weaknesses of cyber electronic warfare. In this study, we present weaknesses and countermeasures of CBRNs in swarm flight operations and provide a basis for future research.

  • PDF

Development of Autonomous Behavior Software based on BDI Architecture for UAV Autonomous Mission (무인기 자율임무를 위한 BDI 아키텍처 기반 자율행동 소프트웨어 개발)

  • Yang, Seung-Gu;Uhm, Taewon;Kim, Gyeong-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.312-318
    • /
    • 2022
  • Currently, the Republic of Korea is facing the problem of a decrease in military service resources due to the demographic cliff, and is pursuing military restructuring and changes in the military force structure in order to respond to this. In this situation, the Army is pushing forward the deployment of a drone-bot combat system that will lead the future battlefield. The battlefield of the future will be changed into an integrated battlefield concept that combines command and control, surveillance and reconnaissance, and precision strike. According to these changes, unmanned combat system, including dronebots, will be widely applied to combat situations that are high risk and difficult for humans to perform in actual combat. In this paper, as one of the countermeasures to these changes, autonomous behavior software with a BDI architecture-based decision-making system was developed. The autonomous behavior software applied a framework structure to improve applicability to multiple models. Its function was verified in a PC-based environment by assuming that the target UAV is a battalion-level surveillance and reconnaissance UAV.

Lunar Crater Detection using Deep-Learning (딥러닝을 이용한 달 크레이터 탐지)

  • Seo, Haingja;Kim, Dongyoung;Park, Sang-Min;Choi, Myungjin
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.49-63
    • /
    • 2021
  • The exploration of the solar system is carried out through various payloads, and accordingly, many research results are emerging. We tried to apply deep-learning as a method of studying the bodies of solar system. Unlike Earth observation satellite data, the data of solar system differ greatly from celestial bodies to probes and to payloads of each probe. Therefore, it may be difficult to apply it to various data with the deep-learning model, but we expect that it will be able to reduce human errors or compensate for missing parts. We have implemented a model that detects craters on the lunar surface. A model was created using the Lunar Reconnaissance Orbiter Camera (LROC) image and the provided shapefile as input values, and applied to the lunar surface image. Although the result was not satisfactory, it will be applied to the image of the permanently shadow regions of the Moon, which is finally acquired by ShadowCam through image pre-processing and model modification. In addition, by attempting to apply it to Ceres and Mercury, which have similar the lunar surface, it is intended to suggest that deep-learning is another method for the study of the solar system.

Development of the Program for Reconnaissance and Exploratory Drones based on Open Source (오픈 소스 기반의 정찰 및 탐색용 드론 프로그램 개발)

  • Chae, Bum-sug;Kim, Jung-hwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • With the recent increase in the development of military drones, they are adopted and used as the combat system of battalion level or higher. However, it is difficult to use drones that can be used in battles below the platoon level due to the current conditions for the formation of units in the Korean military. In this paper, therefore, we developed a program drones equipped with a thermal imaging camera and LiDAR sensor for reconnaissance and exploration that can be applied in battles below the platoon level. Using these drones, we studied the possibility and feasibility of drones for small-scale combats that can find hidden enemies, search for an appropriate detour through image processing and conduct reconnaissance and search for battlefields, hiding and cover-up through image processing. In addition to the purpose of using the proposed drone to search for an enemies lying in ambush in the battlefield, it can be used as a function to check the optimal movement path when a combat unit is moving, or as a function to check the optimal place for cover-up or hiding. In particular, it is possible to check another route other than the route recommended by the program because the features of the terrain can be checked from various viewpoints through 3D modeling. We verified the possiblity of flying by designing and assembling in a form of adding LiDAR and thermal imaging camera module to a drone assembled based on racing drone parts, which are open source hardware, and developed autonomous flight and search functions which can be used even by non-professional drone operators based on open source software, and then installed them to verify their feasibility.

A Study on the Effect of Atmosphere on the Space Surveillance Radar (우주감시레이다에 대한 지구 대기권 영향 분석 연구)

  • Moon, Hyun-Wook;Choi, Eun-Jung;Lee, Jonghyun;Yeum, Jaemeung;Kwon, Sewoong;Hong, Sungmin;Cho, Sungki;Park, Jang-Hyun;Jo, Jung Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.648-659
    • /
    • 2018
  • In this study, both the altitude error due to the refraction and the range error due to the delay in the ionosphere with respect to the frequency are extracted according to the radar elevation to analyze the effect of atmosphere on the space surveillance radar. To achieve this, the radio refractivity profile is modeled using the measured data from domestic weather stations. Then, the altitude-error due to the refraction is extracted using the ray tracing method, and the range error in the ionosphere is extracted according to the frequency. Further, considerations for radar design with respect to the radar error characteristics are discussed based on the abroad space surveillance radar and proposed domestic space surveillance radar. This analysis of the error characteristics is expected to be utilized for the determination of radar location, range of steering, and frequency in the space surveillance radar design.