DOI QR코드

DOI QR Code

The Investigation of Mineral Distribution at Spirit Rover Landing Site: Gusev Crater by CRISM Hyperspectral data and Target Detection Algorithm

CRISM 초분광 영상과 표적 탐지 알고리즘을 이용한 Spirit 로버 탐사 지역: Gusev Crater의 광물 분포 조사

  • Baik, Hyun-Seob (Department of Geophysical Exploration, University of Science & Technology) ;
  • Kim, Kwang-Eun (Korea Institute of Geosciences and Mineral Resources(KIGAM))
  • 백현섭 (과학기술연합대학원대학교 물리탐사공학과) ;
  • 김광은 (한국지질자원연구원)
  • Received : 2016.10.04
  • Accepted : 2016.10.12
  • Published : 2016.10.31

Abstract

Compact Reconnaissance Imaging Spectrometer for Mars(CRISM) is 489-band hyperspectral camera of Mars Reconnaissance Orbiter(MRO) that provided data used on many mineral researches over Martian surface. For the detection of minerals in planet, mineral index using a few spectral bands have been used. In this study, we applied Matched Filter and Adaptive Cosine Estimator(ACE) target detection algorithm on CRISM data over Gusev Crater: landing site of Spirit(Mars Exploration Rover A) to investigate its mineral distribution. As a result, olivine, pyroxene, magnetite, etc. is detected at Gusev Crater's Columbia Hills. These results are corresponding to the Spirit rover's field survey result. It is expected that hyperspectral target detection algorithms can be used as effective and easy to use method for the detection and mapping of surface minerals in planet.

Compact Reconnaissance Imaging Spectrometer for Mars(CRISM)은 489개의 밴드를 가지는 화성정찰궤도선의 초분광 카메라로써 이를 이용한 화성 지표의 광물 분포에 대한 많은 연구가 진행되어 왔다. 본 연구에서는 USGS의 스펙트럼 라이브러리를 기반으로 화성 Gusev Crater의 Spirit(Mars Exploration Rover A) 로버 착륙지에 대한 CRISM 영상에 Matched Filter와 Adaptive Cosine Estimator(ACE) 표적 탐지 알고리즘을 적용하여 광물 분포를 확인하고자 하였다. 연구 결과 감람석, 휘석, 자철석 등의 광물들이 Gusev 크레이터의 Columbia Hills에서 탐지되어 Spirit 로버의 지상 탐사 결과와 일치하고 있음을 확인하였다. 본 연구는 그간 CRISM의 광물 분포 연구가 일부 몇 개 밴드의 반사도만을 통해 계산된 광물 지수에 의존하던 것에서 관측 파장 대역 전체를 활용하는 초분광 표적 탐지 알고리즘을 이용한 새로운 적용방법을 제시한 것에 의의가 있다고 할 수 있다.

Keywords

References

  1. Arvidson, R.E., S.W. Squyres, R.C. Anderson, J.F. Bell III, D. Blaney, J. Bruckner, N.A. Cabrol, W.M. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L. Crumpler, D.J. Des Marais, P.A. de Souza Jr., C. d'Uston, T. Economou, J. Farmer, W.H. Farrand, W. Folkner, M. Golombek, S. Gorevan, J.A. Grant, R. Greeley, J. Grotzinger, E. Guinness, B.C. Hahn, L. Haskin, K.E. Herkenhoff, J.A. Hurowitz, S. Hviid, J.R. Johnson, G. Klingelhofer, A.H. Knoll, G. Landis, C. Leff, M. Lemmon, R. Li, M.B. Madsen, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, J. Moersch, R.V. Morris, T. Parker, J.W. Rice Jr., L. Richter, R. Rieder, D.S. Rodionov, C. Schroder, M. Sims, M. Smith, P. Smith, L.A. Soderblom, R. Sullivan, S.D. Thompson, N.J. Tosca, A. Wang, H. Wanke, J. Ward, T. Wdowiak, M. Wolff, and A. Yen, 2006. Overview of the spirit Mars exploration rover mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research: Planets, 111: E02S01.
  2. Grin, E.A., and N.A. Cabrol., 1997. Limnologic analysis of Gusev crater paleolake, Mars. Icarus, 130(2): 461-474. https://doi.org/10.1006/icar.1997.5817
  3. Ivanov, B.A. A.T. Bazilevskiy, and L.V. Sazonova, 1982. Formation of the central uplift in meteoritic craters. Meteoritika, 40: 60-81. (English technical translation, 1986, NASA TM-88427)
  4. Kim, K.-E., 2015. Study on Improving Hyperspectral Target Detection by Target Signal Exclusion in Matched Filtering. Korean Journal of Remote Sensing, 31(5): 433-440. (In Korean with English abstract) https://doi.org/10.7780/kjrs.2015.31.5.7
  5. Manolakis, D., D. Marden, G.A. Shan, 2003. Detection algorithms for hyperspectral imaging applications. Lincoln Laboratory Journal, 14(1): 79-116.
  6. Morris, R.V., R. V. Morris, G. Klingelhofer, B. Bernhardt, C. Schroder, D.S. Rodionov, P.A. de Souza Jr., A. Yen, R. Gellert, E.N. Evlanov, J. Foh, E. Kankeleit, P. Gutlich, D.W. Ming, F. Renz, T. Wdowiak, S.W. Squyres, and R.E. Arvidson, 2004. Mineralogy at Gusev Crater from the Mossbauer spectrometer on the Spirit Rover. Science, 305(5685): 833-836. https://doi.org/10.1126/science.1100020
  7. Murchie, S., R. Arvidson, P. Bedini, K. Beisser, J.P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, R.T. Clancy, E.H. Darlington, D.D. Marais, R. Espiritu, D. Fort, R. Green, E. Guinness, J. Hayes, C. Hash, K. Heffernan, J. Hemmler, G. Heyler, D. Humm, J. Hutcheson, N. Izenberg, R. Lee, J. Lees, D. Lohr, E. Malaret, T. Martin, J.A. McGovern, P. McGuire, R. Morris, J. Mustard, S. Pelkey, E. Rhodes, M. obinson, T. Roush, E. Schaefer, G. Seagrave, F. Seelos, P. Silverglate, S. Slavney, M. Smith, W.J. Shyong, K. Strohbehn, H. Taylor, P. Thompson, B. Tossman, M. irzburger, and M. Wolff, 2007. Compact reconnaissance imaging spectrometer for Mars(CRISM) on Mars reconnaissance orbiter(MRO). Journal of Geophysical Research: Planets, 112: E05S03.
  8. Scharf L. and B. Friedlander, 1994. Matched subspace detectors. IEEE Transactions on Signal Processing, 42(8): 2146-2157. https://doi.org/10.1109/78.301849
  9. Squyres, S.W., R.E. Arvidson, J.F. Bell III, J. Bruckner, N.A. Cabrol, W. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L. Crumpler, D.J. Des Marais, C. d'Uston, T. Economou, J. Farmer, W. Farrand, W. Folkner, M. Golombek, S. Gorevan, J.A. Grant, R. Greeley, J. Grotzinger, L. Haskin, K.E. Herkenhoff, S. Hviid, J. Johnson, G. Klingelhofer, A. Knoll, G. Landis, M. Lemmon, R. Li, M.B. Madsen, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, J. Moersch, R.V. Morris, T. Parker, J.W. Rice Jr., L. Richter, R. Rieder, M. Sims, M. Smith, P. Smith, L.A. Soderblom, R. Sullivan, H. Wanke, T. Wdowiak, M. Wolff, and A. Yen, 2004. The Spirit rover's Athena science investigation at Gusev crater, Mars. Science, 305(5685): 794-799. https://doi.org/10.1126/science.3050794