• 제목/요약/키워드: recommendation service system

검색결과 372건 처리시간 0.027초

Brainstorming using TextRank algorithms and Artificial Intelligence (TextRank 알고리즘 및 인공지능을 활용한 브레인스토밍)

  • Sang-Yeong Lee;Chang-Min Yoo;Gi-Beom Hong;Jun-Hyuk Oh;Il-young Moon
    • Journal of Practical Engineering Education
    • /
    • 제15권2호
    • /
    • pp.509-517
    • /
    • 2023
  • The reactive web service provides a related word recommendation system using the TextRank algorithm and a word-based idea generation service selected by the user. In the related word recommendation system, the method of weighting each word using the TextRank algorithm and the probability output method using SoftMax are discussed. The idea generation service discusses the idea generation method and the artificial intelligence reinforce-learning method using mini-GPT. The reactive web discusses the linkage process between React, Spring Boot, and Flask, and describes the overall operation method. When the user enters the desired topic, it provides the associated word. The user constructs a mind map by selecting a related word or adding a desired word. When a user selects a word to combine from a constructed mind-map, it provides newly generated ideas and related patents. This web service can share generated ideas with other users, and improves artificial intelligence by receiving user feedback as a horoscope.

Design and Implementation of Intelligent IP Streaming Module Based on Personalized Media Service (개인 맞춤형 미디어 서비스 기반 지능형 IP 스트리밍 모듈 설계 및 구현)

  • Park, Sung-Joo;Yang, Chang-Mo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제4권2호
    • /
    • pp.79-83
    • /
    • 2009
  • Streaming Technology can support the real-time playback without downloading and storing multimedia data in local HDD. So, client browser or plug-in can represent multimedia data before the end of file transmission using streaming technology. Recently, the demand for efficient real-time playback and transmission of large amounts of multimedia data is growing rapidly. But most users' connections over network are not fast and stable enough to download large chunks of multimedia data. In this paper, we propose an intelligent IP streaming system based on personalized media service. The proposed IP streaming system enables users to get an intelligent recommendation of multimedia contents based on the user preference information stored on the streaming server or the home media server. The supposed intelligent IP streaming system consists of Server Metadata Agent, Pumping Server, Contents Storage Server, Client Metadata Agent and Streaming Player. And in order to implement the personalized media service, the user information, user preference information and client device information are managed under database concept. Moreover, users are assured of seamless access of streamed content event if they switch to another client device by implementing streaming system based on user identification and device information. We evaluate our approach with manufacturing home server system and simulation results.

  • PDF

Financial Products Recommendation System Using Customer Behavior Information (고객의 투자상품 선호도를 활용한 금융상품 추천시스템 개발)

  • Hyojoong Kim;SeongBeom Kim;Hee-Woong Kim
    • Information Systems Review
    • /
    • 제25권1호
    • /
    • pp.111-128
    • /
    • 2023
  • With the development of artificial intelligence technology, interest in data-based product preference estimation and personalized recommender systems is increasing. However, if the recommendation is not suitable, there is a risk that it may reduce the purchase intention of the customer and even extend to a huge financial loss due to the characteristics of the financial product. Therefore, developing a recommender system that comprehensively reflects customer characteristics and product preferences is very important for business performance creation and response to compliance issues. In the case of financial products, product preference is clearly divided according to individual investment propensity and risk aversion, so it is necessary to provide customized recommendation service by utilizing accumulated customer data. In addition to using these customer behavioral characteristics and transaction history data, we intend to solve the cold-start problem of the recommender system, including customer demographic information, asset information, and stock holding information. Therefore, this study found that the model proposed deep learning-based collaborative filtering by deriving customer latent preferences through characteristic information such as customer investment propensity, transaction history, and financial product information based on customer transaction log records was the best. Based on the customer's financial investment mechanism, this study is meaningful in developing a service that recommends a high-priority group by establishing a recommendation model that derives expected preferences for untraded financial products through financial product transaction data.

Social Tagging-based Recommendation Platform for Patented Technology Transfer (특허의 기술이전 활성화를 위한 소셜 태깅기반 지적재산권 추천플랫폼)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • 제21권3호
    • /
    • pp.53-77
    • /
    • 2015
  • Korea has witnessed an increasing number of domestic patent applications, but a majority of them are not utilized to their maximum potential but end up becoming obsolete. According to the 2012 National Congress' Inspection of Administration, about 73% of patents possessed by universities and public-funded research institutions failed to lead to creating social values, but remain latent. One of the main problem of this issue is that patent creators such as individual researcher, university, or research institution lack abilities to commercialize their patents into viable businesses with those enterprises that are in need of them. Also, for enterprises side, it is hard to find the appropriate patents by searching keywords on all such occasions. This system proposes a patent recommendation system that can identify and recommend intellectual rights appropriate to users' interested fields among a rapidly accumulating number of patent assets in a more easy and efficient manner. The proposed system extracts core contents and technology sectors from the existing pool of patents, and combines it with secondary social knowledge, which derives from tags information created by users, in order to find the best patents recommended for users. That is to say, in an early stage where there is no accumulated tag information, the recommendation is done by utilizing content characteristics, which are identified through an analysis of key words contained in such parameters as 'Title of Invention' and 'Claim' among the various patent attributes. In order to do this, the suggested system extracts only nouns from patents and assigns a weight to each noun according to the importance of it in all patents by performing TF-IDF analysis. After that, it finds patents which have similar weights with preferred patents by a user. In this paper, this similarity is called a "Domain Similarity". Next, the suggested system extract technology sector's characteristics from patent document by analyzing the international technology classification code (International Patent Classification, IPC). Every patents have more than one IPC, and each user can attach more than one tag to the patents they like. Thus, each user has a set of IPC codes included in tagged patents. The suggested system manages this IPC set to analyze technology preference of each user and find the well-fitted patents for them. In order to do this, the suggeted system calcuates a 'Technology_Similarity' between a set of IPC codes and IPC codes contained in all other patents. After that, when the tag information of multiple users are accumulated, the system expands the recommendations in consideration of other users' social tag information relating to the patent that is tagged by a concerned user. The similarity between tag information of perferred 'patents by user and other patents are called a 'Social Simialrity' in this paper. Lastly, a 'Total Similarity' are calculated by adding these three differenent similarites and patents having the highest 'Total Similarity' are recommended to each user. The suggested system are applied to a total of 1,638 korean patents obtained from the Korea Industrial Property Rights Information Service (KIPRIS) run by the Korea Intellectual Property Office. However, since this original dataset does not include tag information, we create virtual tag information and utilized this to construct the semi-virtual dataset. The proposed recommendation algorithm was implemented with JAVA, a computer programming language, and a prototype graphic user interface was also designed for this study. As the proposed system did not have dependent variables and uses virtual data, it is impossible to verify the recommendation system with a statistical method. Therefore, the study uses a scenario test method to verify the operational feasibility and recommendation effectiveness of the system. The results of this study are expected to improve the possibility of matching promising patents with the best suitable businesses. It is assumed that users' experiential knowledge can be accumulated, managed, and utilized in the As-Is patent system, which currently only manages standardized patent information.

Product Recommender System for Online Shopping Malls using Data Mining Techniques (데이터 마이닝을 이용한 인터넷 쇼핑몰 상품추천시스템)

  • Kim, Kyoung-Jae;Kim, Byoung-Guk
    • Journal of Intelligence and Information Systems
    • /
    • 제11권1호
    • /
    • pp.191-205
    • /
    • 2005
  • This paper presents a novel product recommender system as a tool fur differentiated marketing service of online shopping malls. Ihe proposed model uses genetic algorithnt one of popular global optimization techniques, to construct a personalized product recommender systen The genetic algorinun may be useful to recommendation engine in product recommender system because it produces optimal or near-optimal recommendation rules using the customer profile and transaction data. In this study, we develop a prototype of WeLbased personalized product recommender system using the recommendation rules fi:om the genetic algorithnL In addition, this study evaluates usefulness of the proposed model through the test fur user satisfaction in real world.

  • PDF

A Hybrid Multimedia Contents Recommendation Procedure for a New Item Problem in M-commerce (하이브리드 기법을 이용한 신상품 추천문제 해결방안에 관한 연구 : 모바일 멀티미디어 컨텐츠를 중심으로)

  • Kim Jae-Kyeong;Cho Yoon-Ho;Kang Mi-Yeon;Kim Hyea-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • 제12권2호
    • /
    • pp.1-15
    • /
    • 2006
  • Currently the mobile web service is growing with a tremendous speed and mobile contents are spreading extensively. However, it is hard to search what the user wants because of some limitations of cellular phones. And the music is the most popular content, but many users experience frustrations to search their desired music. To solve these problems, this research proposes a hybrid recommendation system, MOBICORS-music (MOBIle COntents Recommender System for Music). Basically it follows the procedure of Collaborative Filtering (CF) system, but it uses Contents-Based (CB) data representation for neighborhood formation and recommendation of new music. Based on this data representation, MOBICORS-music solves the new item ramp-up problem and results better performance than existing CF systems. The procedure of MOBICORS-music is explained step by step with an illustrative example.

  • PDF

Plan of KASS NOTAM Service Provision & System Architecture Through Analysis of Overseas Case (국외 사례분석을 통한 KASS NOTAM 서비스 제공 및 시스템 구성 방안)

  • Han, Ji-Ae;Lee, EunSung;Kim, Youn-Sil;Kang, Hee Won
    • Journal of Advanced Navigation Technology
    • /
    • 제22권2호
    • /
    • pp.96-104
    • /
    • 2018
  • NOTAM is an announcement that is distributed to flight attendants with status information related to aviation. ICAO, the International Civilian Aviation Organization, recommends that a NOTAM service be provided for the SBAS service in order to use the SBAS signal-based access procedure. To comply with ICAO recommendation, KASS must provide NOTAM service to all aircraft landing using SBAS signal in order to provide APV-I SoL service. Therefore, it is necessary to develop KASS NOTAM system to provide KASS NOTAM service. In this paper, we analyzed the regulations related to NOTAM in Korea and abroad and analyzed the present state of NOTAM service in Korea. Based on this, we propose a method of providing KASS NOTAM service. We analyzed the NOTAM system of WAAS in the US and EGNOS in Europe and analyzed the main functional requirements of the KASS NOTAM system.

POI Recommender System based on Folksonomy Using Mashup (매쉬업을 이용한 폭소노미 기반 POI 추천 시스템)

  • Lee, Dong Kyun;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • 제5권2호
    • /
    • pp.13-20
    • /
    • 2009
  • The most of navigation services these days, are designed in order to just provide a shortest path from current position to destination for a user. Several navigation services provides not only the path but some fragmentary information about its point, but, the data tends to be highly restricted because it's quality and quantity totally depends on service provider's providing policy. In this paper, we describe the folksonomy POI(Point of interest) recommender system using mashup in order to provide the information that is more useful to the user. The POI recommender system mashes-up the user's folksonomy data that stacked by user with using external folksonomy service(like Flickr) with others' in order to provide more useful information for the user. POI recommender system recommends others' tag data that is evaluated with the user folksonomy similarity. Using folksonomy mahup makes the services can provide more information that is applied the users' karma. By this, we show how to deal with the data's restrictions of quality and quantity.

EXIF-based Hashtag Recommender System on Social Networking Service (사회연결망서비스의 EXIF 기반 Hashtag 추천 시스템)

  • Sang Hoon Lee;Su-Yeon Kim
    • Information Systems Review
    • /
    • 제20권3호
    • /
    • pp.73-92
    • /
    • 2018
  • Many users are uploading their daily life activities on SNS and use hashtags to describe their postings. Hashtag has the advantage of letting users specify categories for their postings, however until now, the users has had to manually input the hashtags which has been very inconvenient for them. Therefore, in order to address this issue, this paper proposes a hashtag recommender system which recommends proper hashtags to users based on their uploaded images on SNS. The proposed system is designed using four analytic structures, which is composed of a camera information-based analysis, an address-based analysis, a location based CF analysis, and an image-based analysis. In order to check whether the proposed system is improved compared to the existing systems in terms of the hashtag recommendation function, we conducted an evaluation with 212 SNS users from fifteen countries. As a result of the evaluation process, the proposed system shows very high accuracy recommendation results compared to the existing hashtag recommender systems.

Design and Development of POS System Based on Social Network Service (소셜 네트워크 서비스 기반의 POS 시스템 설계 및 개발)

  • Yoon, Jung Hyun;Moon, Hyun Sil;Kim, Jae Kyeong;Choi, Ju Cheol
    • Journal of Information Technology Services
    • /
    • 제14권2호
    • /
    • pp.143-158
    • /
    • 2015
  • Companies and governments in an era of big data have been tried to create new values with their data resources. Among many data resources, many companies especially pay attention to data which is obtained from Social Network Service (SNS) because it reveals precise opinion of customers and can be used to estimate profiles of them from their social relationships. However, it is not only hard to collect, store, and analyze the data, but system applications are also insufficient. Therefore, this study proposes a S-POS (Social POS) system which consists of three parts; Twitter Side, POS Side and TPAS (Twitter&POS Analysis System). In this system, SNS data and POS data which are collected from Twitter Side and POS Side are stored in Mongo D/B. And it provides several services with POS terminal based on analysis and matching results which are generated from TPAS. Through S-POS system, we expect to efficient and effective store and sales managements of system users. Moreover, they can provide some differentiated services such as cross-selling and personalized recommendation services.