• Title/Summary/Keyword: recombinant fermentation

Search Result 173, Processing Time 0.021 seconds

Enhanced Activity of Phenylalanine Ammonia Lyase in Permeabilised Recombinant E. coli by Response Surface Method

  • Cui, Jian-dong;Li, Yan;Jia, Shi-Ru
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.494-499
    • /
    • 2009
  • To improve phenylalanine ammonia lyase (E.C.4.3.1.5-PAL) activity in recombinant Escherichia coli, Some approaches for improving phenylalanine ammonia lyase (PAL) activity in recombinant E. coli were developed following preliminary studies by means of response surface method. The results shown that permeabilization with combination of Triton X-100, cetyl trimethyl ammonium bromide (CTAB), and acetone enriched cellular recombinant PAL activity significantly, which improved over 10-fold as compared with the control (untreat cell), as high as 181.37 U/g. The optimum values for the tested variables were Triton X-100 0.108 g/L, CTAB 0.15 g/L, and acetone 45.2%(v/v). Furthermore, a second-order model equation was suggested and then validated experimentally. It was indicated that addition of surfactants and organic solvents made the cells more permeable and therefore allowed easier access of the substrate to the enzyme and excretion of the product, which increased the rate of transport of L-phenylalanine and trans-cinnamic acids. These improved methods of PAL activity enrichment could serve as a rich enzyme source, especially in the biosynthesis of L-phenylalanine.

Influence of Plasmid Properties on Fermentation Parameters of Recombinant Escherichia coli

  • Lee, In-Young;Seo, Dong-Jin;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.35-40
    • /
    • 1992
  • The influence of the nature of plasmids on fermentation parameters such as cell growth, cell viability, plasmid stability, and product formation has been investigated using E. coli M5248 and its recombinant derivatives M5248 [pBR322], M5248[pAS1], and M5248[pNKM21]. At a low temperature ($30^\circ{C}$), the cell growth, cell viability, and protein synthesis of the recombinants were nearly identical to those of the host cell. However, at high temperature ($42^\circ{C}$), in which transcription from the P_L$ promoter is derepressed, the recombinant cells showed decreased stability along with lower growth rates and cell viability. The ratio of total protein to cell mass was in the order of E. coli M5248>M5248[pBR322]>M5248[pAS1]>M5248[pNKM21]. It was found that transcription from the $P_L$ promoter adversely affect the plasmid maintenance and host cell metabolism even in the absence of the cloned-gene expression. Furthermore, profiles of ${\beta}$ activity were shown to vary with recombinant strains. E coli M5248[pBR322] showed highest ${\beta}-lactamase$ activity at $30^\circ{C}$, while at $42^\circ{C}\;{\beta}-lactamase$ activity was significantly reduced irrespective of the strains. The effect of the plasmid properties on plasmid-encoded gene expression has been further examined based on the relationship between $\{beta}-lactamase$ activity and plasmid-harboring cell numbers.

  • PDF

Large-scale Recovery of Recombinant Protein Inclusion Bodies Expressed in Escherichia coli

  • Middelberg. Anton P.J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.225-231
    • /
    • 1996
  • The production of recombinant proteins in Escherichia coli often leads to the formation of an intracellular inclusion body. Key process steps that can determine the economics of large-scale protein production from inclusion bodies are fermentation, inclusion body recovery, and protein refolding. Compared with protein refolding and fermentation, inclusion body recovery has received scant research attention. Nevertheless, it can control the final product yield and hence process cost for some products. Optimal separation of inclusion bodies and cell debris can also aid subsequent operations by removing contaminant particulates that foul chromatographic resins and contain antigenic pyrogens. In this review, the properties of inclusion bodies and cellular debris are therefore examined. Attempts to optimise the centrifugal separation of inclusion bodies and debris are also discussed.

  • PDF

On-line Induction of Fermentation with Recombinant Cells : Part III. Condition Optimization and Computer Control (유전자 재조합 세포 발효의 온.라인 유도 : 제 3부. 조건 최적화 및 콤퓨터 자동 제어)

  • 이철균;최차용
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.208-214
    • /
    • 1989
  • The computer interfaced by the necessary hardwares and the software developed in PARTs I and II were used to control the fermentation with recombinant cells in an on-line feedback-feed-forward manner. The recombinant cells were induced for expression either thermally or chemically. Very accurate controls with fast response and no oscillation could be performed.

  • PDF

Metabolic Analysis of Poly(3-Hydroxybutyrate) Production by Recombinant Escherichia coli

  • WONG, HENG HO;RICHARD J. VAN WEGEN;JONG-IL CHOI;SANG YUP LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.593-603
    • /
    • 1999
  • Poly(3-hydroxybutyrate) (PHB) production by fermentation was examined under both restricted- and ample-oxygen supply conditions in a single fed-batch fermentation. Recombinant Escherichia coli transformed with the PHB production plasmid pSYLl07 was grown to reach high cell density (227 g/l dry cell weight) with a high PHB content (78% of dry cell weight), using a glucose-based minimal medium. A simple flux model containing 12 fluxes was developed and applied to the fermentation data. A superior closure (95%) of the carbon mass balance was achieved. When the data were put into use, the results demonstrated a surprisingly large excretion of formate and lactate. Even though periods of severe oxygen limitation coincided with rapid acetate and lactate excretion, PHB productivity and carbon utilization efficiency were not significantly impaired. These results are very positive in reducing oxygen demand in an industrial PHA fermentation without sacrificing its PHA productivity, thereby reducing overall production costs.

  • PDF

Construction of Amylolytic Industrial Brewing Yeast Strain with High Glutathione Content for Manufacturing Beer with Improved Anti-Staling Capability and Flavor

  • Wang, Jin-Jing;Wang, Zhao-Yue;He, Xiu-Ping;Zhang, Bo-Run
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1539-1545
    • /
    • 2010
  • In beer, glutathione works as the main antioxidant compound, which also correlates with the stability of the beer flavor. In addition, high residual sugars in beer contribute to major nonvolatile components, which are reflected in a high caloric content. Therefore, in this study, the Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and the Saccharomycopsis fibuligera ALP1 gene encoding ${\alpha}$-amylase were coexpressed in industrial brewing yeast strain Y31 targeting the ${\alpha}$-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), resulting in the new recombinant strain TY3. The glutathione content in the fermentation broth of TY3 increased to 43.83 mg/l as compared with 33.34 mg/l in the fermentation broth of Y31. The recombinant strain showed a high ${\alpha}$-amylase activity and utilized more than 46% of the starch as the sole carbon source after 5 days. European Brewery Convention tube fermentation tests comparing the fermentation broths of TY3 and Y31 showed that the flavor stability index for TY3 was 1.3-fold higher, whereas its residual sugar concentration was 76.8% lower. Owing to the interruption of the ILV2 gene and ADH2 gene, the contents of diacetyl and acetaldehyde as off-flavor compounds were reduced by 56.93% and 31.25%, respectively, when compared with the contents in the Y31 fermentation broth. In addition, since no drug-resistant genes were introduced to the new recombinant strain, it should be more suitable for use in the beer industry, owing to its better flavor stability and other beneficial characteristics.

Purification and Characterization of Clostridium thermocellum Xylanase from Recombinant Escherichia coli

  • Koo, Bon-Joon;Oh, Hwa-Gyun;Cho, Ki-Haeng;Yang, Chang-Kun;Jung, Kyung-Hwa;Ryu, Dai-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.414-419
    • /
    • 1996
  • The xylnX gene encoding a xylanase from Clostridium thermocellum ATCC27405 was cloned in the plasmid pJH27, an E. coli-Bacillus shuttle vector and the resultant recombinant plasmid, pJX18 was transformed into E. coli HB101. The overexpressed xylanase was found to be secreted into the periplasmic space of the recombinant E. coli cells. The crude enzyme was obtained by treating the E. coli cells with lysozyme, and purified by DEAE-Sepharose column chromatography. Molecular wieght of the xylanase was estimated to be 53 kDa by gel filtration. The pI value was determined to be pH 8.8. The N-terminal sequence of the enzyme protein was Asp-Asp-Asn-Asn-Ala-Asn-Leu-Val-Ser-Asn which was considered to be the sequence of that of the mature form protein. The Km value of the enzyme for oat spelt xylan was calculated to be 2.63 mg/ml and the Vmax value was $0.47 {\mu}mole/min$. The xylanase had a pH optimum for its activity at pH 5.4 and a temperature optimum at $60^{\circ}C$. The enzyme hydrolyzed xylan into xylooligosaccharides which were composed mainly of xylobiose (40%) and xyloltriose (12%) after 5 hour reaction. This result indicates that the xylanase from C. thermocellum ATCC27405 is an endo-acting enzyme.

  • PDF

Characterization of two substrates fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene

  • Lee, U-Jong;Yu, Yeon-U;Seo, Jin-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.41-44
    • /
    • 2000
  • Fermentation characteristics of recombinant Saccharomyces cerevisiae containing the xylose reductase gene from Pichia stipitis were analyzed in an attempt to convert xylose to xylitol, a natural five-carbon sugar alcohol used as a sweetener. Xylitol was produced with a maximum yield of 0.95 (g xylitol/g xylose consumed) in the presence of glucose that is used as a cosubstrate for cofactor regeneration. However addition of glucose caused inhibition of xylose transport and accumulation of ethanol. Such problems were solved by adopting glucose-limlted fed-batch fermentation. This process done with S, cerevisiae EHl3.15:pY2XR at$30\;^{\circ}C$ resulted in 105.2g/L xylitol concentration with maximum productivity of 1.69 g $L^{-1}$ $hr^{-1}$.

  • PDF

Fermentation of carboxymethylcellulase using recombinant DNA-Bacillus megaterium

  • Son, Kwang-Hee;Jang, Jong-Hyun;Kim, Jung-Hoe
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.525.3-526
    • /
    • 1986
  • For the analysis of fermentation characteristics and productivity of plasmid coded product, car-boxymethylcellulase in a recombinant DNA cell fermentation system, batch and continuous fermentations were carried out using a Bacillus megaterium ATCC 14945 transformed with a plasmid, pCK 108 haboring carboxymethyl cellulase gene. The effects of carbon and nitrogen sources and of temperature and pH on cell growth, product yield, plasmid stability, specific plasmid contents of cell, and gene expression efficiency were carefully studied. These experimental results will be discussed in some details.

  • PDF

Optimization of Extracellular Production of Recombinant Human Bone Morphogenetic Protein-7 (rhBMP-7) with Bacillus subtilis

  • Kim, Chun-Kwang;Rhee, Jong Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.188-196
    • /
    • 2014
  • Extracellular production of recombinant human bone morphogenetic protein-7 (rhBMP-7) was carried out through the fermentation of Bacillus subtilis. Three significant fermentation conditions and medium components were selected and optimized to enhance the rhBMP-7 production by using the response surface methodology (RSM). The optimum values of the three variables for the maximum extracellular production of rhBMP-7 were found to be 2.93 g/l starch, 5.18 g/l lactose, and a fermentation time of 34.57 h. The statistical optimization model was validated with a few fermentations of B. subtilis in shake flasks under optimized and unoptimized conditions. A 3-L jar fermenter using the shake-flask optimized conditions resulted in a higher production (413 pg/ml of culture medium) of rhBMP-7 than in a shake flask (289.1 pg/ml), which could be attributed to the pH being controlled at 6.0 and constant agitation of 400 rpm with aeration of 1 vvm.