• Title/Summary/Keyword: recombinant erythropoietin

Search Result 96, Processing Time 0.025 seconds

MS Platform for Erythropoietin Glycome Characterization

  • Seo, Youngsuk;Kim, Unyong;Oh, Myung Jin;Yun, Na Young;An, Hyun Joo
    • Mass Spectrometry Letters
    • /
    • v.6 no.3
    • /
    • pp.53-58
    • /
    • 2015
  • Recombinant erythropoietins (EPOs) are an important class of biotherapeutics that stimulate red blood cell production. The quality, safety, and potency of EPO variants are determined largely by their glycosylation, which makes up nearly half their mass. Thus, detailed glycomic analyses are important to assess biotherapeutic quality and establish the equivalency of biosimilar EPOs now coming to market. High-resolution mass spectrometry (MS) has recently emerged as the premier tool for glycan analysis in EPOs. Using the accurate mass measurements provided by high-resolution MS, the compositions of even large, complex glycans can easily be determined. When combined with a nano-LC separation, differentiation of structural isomers also becomes a possibility. These components, together, provide a comprehensive picture of biotherapeutic glycosylation. In this review, we provide an overview of MS-based analytical platform for glycomic characterization of EPO biotherapeutics and biosimilars.

Comparative Analysis of Screening Results from Various ELISA Formats Used for Detection of Anti-Erythropoietin Antibodies in Korean Patients

  • Ha, Sung-Kyu;Yang, Seung-Ju;Shin, Sug-Kyun;Jo, Young-Il;Baek, Kyung-Min;Hong, Seung-Hwa;Pack, Seung-Pil;Kim, Sung-Jo;Heo, Tae-Hwe
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.184-190
    • /
    • 2010
  • Clinical cases of pure red cell aplasia (PRCA) have been reported during the recombinant human erythropoietin (EPO) therapy for the anemia patients. PRCA is a rare hematological disorder leading to a severe anemia due to an almost complete stop of red blood cell production. Antibody (Ab)-associated PRCA is caused by the EPO-neutralizing Abs that eliminate the biological activity of EPO. In order to detect anti-EPO Abs in human sera, we performed conventional ELISA, directly coated bridging ELISA, and streptavidin coated bridging ELISA, and compared their sensitivity and specificity. Some false positive results were obtained in the conventional ELISA. One positive sample was detected successfully by streptavidin coated bridging ELISA, which was not appeared in the directly coated bridging ELISA. In conclusion, streptavidin coated bridging ELISA was substantially sensitive and specific format and one out of sixty-eight serum samples was proved to be anti-EPO positive.

Human Erythropoietin Induces Lung Failure and Erythrocytosis in Transgenic Mice

  • Kim, Myoung Ok;Kim, Sung Hyun;Shin, Mi Jung;Lee, Dong Beom;Kim, Tae Won;Kim, Kil Soo;Ha, Ji Hong;Lee, Sanggyu;Park, Yong Bok;Kim, Sun Jung;Ryoo, Zae Young
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • We have expressed human erythropoietin (EPO) in transgenic mice using a recombinant EPO cDNA combined with a partial TPO construct. The gene was microinjected using standard techniques and five mice were detected as transgenic by PCR and further used as founders. The life span of the transgenic founders was much shorter than that of their normal littermates. Most of the tissues of the transgenic founders contained human EPO transcripts as judged by RT-PCR. Especially high expression levels were seen in the liver and lung. EPO protein levels in serum were examined by ELISA and ranged from 266-414 mIU/ml. The number of red blood cell, white blood cell and hemoglobin in the hEPO transgenic mice was higher than in normal mice. These results indicate that overexpression of hEPO is deleterious and can provoke lung failure and erythrocytosis.

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation

  • Im, Jun Hyung;Yeo, In Jun;Hwang, Chul Ju;Lee, Kyung Sun;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.152-162
    • /
    • 2020
  • Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.6
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.

Biological Activity of Human Dimeric Hyperglycosylated Erythropoietin (dHGEPO) Fusion Proteins

  • Naidansuren, Purevjargal;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • Erythropoietin (EPO) is a glycoprotein hormone secreted from primarily cells of the peritubular capillary endothelium of the kidney, and is responsible for the regulation of red blood cell production. We constructed and expressed dimeric cDNAs in Chinease hamster ovary (CHO) cells encoding a fusion protein consisting of 2 complete human EPO domains linked by a 2-amino acid linker (Ile-Asp). We described the activity of dimeric hyperglycosylated EPO (dHGEPO) mutants containing additional oligosaccharide chains and characterized the function of glycosylation. No dimeric proteins with mutation at the $105^{th}$ amino acid were found in the cell medium. Growth and differentiation of the human EPO-dependent leukemiae cell line (F36E) were used to measure cytokine dependency and in vitro bioactivity of dHGEPO proteins. MIT assay at 24 h increased due to the survival of F36E cells. The dHGEPO protein migrated as a broad band with an average molecular mass of 75 kDa. The mutant, dHGEPO, was slightly higher than the wild-type (WT) dimeri-EPO band. Enzymatic N-deglycosylation resulted in the formation of a narrow band with a molecular mass twice of that of of monomeric EPO digested with an N-glycosylation enzyme. Hematocrit values were remarkably increased in all treatment groups. Pharmacokinetic analysis was also affected when 2.5 IU of dHGEPO were intravenously injected into the tails of the mice. The biological activity and half-life of dHGEPO mutants were enhanced as compared to the corresponding items associated the WT dimeric EPO. These results suggest that recombinant dHGEPO may be attractive biological and therapeutic targets.

General Pharmacology of Erythropoietin Produced by a New Recombinant DNA Technique (새로운 유전자 재조합 기술에 의하여 생산된 Erythropoietin의 일반약리작용)

  • 김영훈;정성목;임동문;조효진;정재경;김달현;박관하;이동억;김현수
    • Biomolecules & Therapeutics
    • /
    • v.2 no.4
    • /
    • pp.336-342
    • /
    • 1994
  • The general pharmacological properties of EPO were investigated in various animals administering intravenously and in vitro system. The results were as follows. 1. Central nervous system: EPO at doses of 70, 700, 7000 U/kg showed no effect In mice on general behavior, on strychnine- and pentetrazol-induced convulsion and on acetic acid-induced writhing syndrome. The hexobarbital-induced sleeping time in mice was slightly reduced by EPO at a dose of 7000 U/kg but did not change at doses of 70, 700 U/kg. The body temperature in rats was slightly decreased by EPO at doses of 700, 7,000 U/kg but the change was in normal physiological range. 2. Respiratory and cardiovascular system: EPO showed no effect on respiratory rate, blood pressure, heart rate, femoral blood flow, and electrocardiogram in anesthetized dogs at doses of 70, 700, 7000 U/kg. 3. Smooth muscle: EPO at concentrations of 70, 700 U/ml had no effect on the contractile response of isolated guinea pig ileum to histamine and acetylcholine. 4. Water and electrolytes excretion: EPO at dose above 700 U/kg increased urine volume in rats but did not affect the concentrations of $Na^{+},\;K^{+},\;Cl^{-}$ in urine. 5. Gastrointestinal system: EPO(70, 700, 7000 U/kg) had no effect on the intestinal charcoal meal propulsion 6. Blood coagulation system: The administration of EPO(70, 700, 7000 U/kg) had no effect on the plasma prothrombin time(PT) and activated partial thromboplastin time(APTT) in mice. Platelet aggregation induced by ADP and collagen was not influenced by EPO(70 U/ml, 700 U/ml). The overall results obtained indicated that EPO exerts almost no serious pharmacological effect even at a 100-fold clinical dose(7000 U/kg).

  • PDF

The neuroprotective effect of recombinant human erythropoietin via an antiapoptotic mechanism on hypoxic-ischemic brain injury in neonatal rats

  • Kim, Moon-Sun;Seo, Yoo-Kyung;Park, Hye-Jin;Lee, Kye-Hyang;Lee, Kyung-Hoon;Choi, Eun-Jin;Kim, Jin-Kyung;Chung, Hai-Lee;Kim, Woo-Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.10
    • /
    • pp.898-908
    • /
    • 2010
  • Purpose: The neuroprotective effects of erythropoietin (EPO) have been recently shown in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity; however, limited data are available for such effects during the neonatal periods. Therefore, we investigated whether recombinant human EPO (rHuEPO) can protect against perinatal HI brain injury via an antiapoptotic mechanism. Methods: The left carotid artery was ligated in 7-day-old Sprague-Dawley (SD) rat pups ($in$ $vivo$ model). The animals were divided into 6 groups: normoxia control (NC), normoxia sham-operated (NS), hypoxia only (H), hypoxia+vehicle (HV), hypoxia+rHuEPO before a hypoxic insult (HE-B), and hypoxia+rHuEPO after a hypoxic insult (HE-A). Embryonic cortical neuronal cell culture of SD rats at 18 days gestation ($in$ $vitro$ model) was performed. The cultured cells were divided into 5 groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated groups. Results: In the $in$ $vivo$ model, Bcl-2 expressions in the H and HV groups were lower than those in the NC and NS groups, whereas those in the HE-A and HE-B groups were greater than those of the H and HV groups. The expressions of Bax and caspase-3 and the ratio of Bax/Bcl-2 were in contrast to those of Bcl-2. In the $in$ $vitro$ model, the patterns of Bcl-2, Bax, and caspase-3 expression and Bax/Bcl-2 ratio were similar to the results obtained in the in vivo model. Conclusion: rHuEPO exerts neuroprotective effect against perinatal HI brain injury via an antiapoptotic mechanism.

Identification of HUGT1 as a Potential BiP Activator and a Cellular Target for Improvement of Recombinant Protein Production Using a cDNA Screening System

  • Ku, Sebastian Chih Yuan;Lwa, Teng Rhui;Giam, Maybelline;Yap, Miranda Gek Sim;Chao, Sheng-Hao
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.577-582
    • /
    • 2009
  • The development of a high-throughput functional genomic screening provides a novel and expeditious approach in identifying critical genes involved in specific biological processes. Here we describe a cell-based cDNA screening system to identify the transcription activators of BiP, an endoplasmic reticulum (ER) chaperone protein. BiP promoter contains the ER stress element which is commonly present in the genes involved in unfolded protein response (UPR) that regulates protein secretion in cells. Therefore, the positive regulators of BiP may also be utilized to improve the recombinant protein production through modulation of UPR. Four BiP activators, including human UDP-glucose:glycoprotein glucosyltransferase 1 (HUGT1), are identified by the cDNA screening. Overexpression of HUGT1 leads to a significant increase in the production of recombinant erythropoietin, interferon ${\gamma}$, and monoclonal antibody in HEK293 cells. Our results demonstrate that the cDNA screening for BiP activators may be effective to identify the novel BiP regulators and HUGT1 may serve as an ideal target gene for improving the recombinant protein production in mammalian cells.

Neuroprotection of Recombinant Human Erythropoietin Via Modulation of N-methyl-D-aspartate Receptors in Neonatal Rats with Hypoxic-ischemic Brain Injury (신생 백서의 저산소성 허혈성 뇌손상에서 NMDA receptor 조절을 통한 유전자 재조합 인 에리스로포이에틴의 신경보호)

  • Jang, Yoon-Jung;Seo, Eok-Su;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.16 no.2
    • /
    • pp.221-233
    • /
    • 2009
  • Purpose: Erythropoietin (EPO) has neuroprotective effects in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity. Current studies have demonstrated the neuroprotective effects of EPO, but limited data are available for the neonatal periods. Here in we investigated whether recombinant human EPO (rHuEPO) can protect the developing rat brain from HI injury via modulation of NMDA receptors. Methods: In an in vitro model, embryonic cortical neuronal cell cultures from Sprague-Dawley (SD) rats at 19-days gestation were established. The cultured cells were divided into five groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated (H+E1, H+ E10, and H+E100) groups. To estimate cell viability and growth, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was done. In an in vivo model, left carotid artery ligation was performed on 7-day-old SD rat pups. The animals were divided into six groups; normoxia control (NC), normoxia Sham-operated (NS), hypoxia-ischemia only (H), hypoxia-ischemia+vehicle (HV), hypoxia-ischemia+rHuEPO before a HI injury (HE-B), and hypoxia-ischemia+rHuEPO after a HI injury (HE-A). The morphologic changes following brain injuries were noted using hematoxylin and eosin (H/E) staining. Real-time PCR using primers of subunits of NMDA receptors (NR1, NR2A, NR2B, NR2C and NR2D) mRNA were performed. Results: Cell viability in the H group was decreased to less than 60% of that in the N group. In the H+E1 and H+E10 groups, cell viability was increased to >80% of the N group, but cell viability in the H+E100 group did not recover. The percentage of the left hemisphere area compared the to the right hemisphere area were 98.9% in the NC group, 99.1% in the NS group, 57.1% in the H group, 57.0% in the HV group, 87.6% in the HE-B group, and 91.6% in the HE-A group. Real-time PCR analysis of the expressions of subunits of NMDA receptors mRNAs in the in vitro and in vivo neonatal HI brain injuries generally revealed that the expression in the H group was decreased compared to the N group and the expressions in the rHuEPO-treated groups was increased compared to the H group. Conclusion: rHuEPO has neuroprotective property in perinatal HI brain injury via modulation of N-methyl-D-aspartate receptors.