• Title/Summary/Keyword: recognition point

Search Result 1,214, Processing Time 0.023 seconds

A Research on the psychological risk recognition and Brand Attitude of Bakery Consumers on Negative Media Report (부정적 언론보도에 대한 베이커리 소비자의 심리적 위험지각과 브랜드태도 연구)

  • Jung, Soon Hwa;Han, kyung soo
    • Korean Journal of Human Ecology
    • /
    • v.24 no.4
    • /
    • pp.513-529
    • /
    • 2015
  • This study performed corroborative analysis by establishing hypothesis so as to corroboratively define the effect on brand attitude of psychological risk recognition in the case where consumers reading negative media news related to bakery recognize crisis communication on the basis of which point. According to corroborative analysis, the role of psychological crisis perception as parameter is confirmed in the causal relation between crisis communication recognition and brand attitude. Such result of study confirms that the positive change in crisis communication recognition reduces psychological risk perception to bakery products and such psychological risk perception eventually become factor which affects brand attitude over products. Such result of study suggests that when reading negative media news on bakery, the influence on consumer's evaluation of news on the basis of certain point and the influence on the formation of causal relation between psychological risk perception and brand attitude has scientific ground. In the aspect, the main result of this study is to find the clue that when comparing precedent study between crisis communication recognition and brand attitude, psychological risk perception is realized with brand attitude as media by verifying the parameter role of psychological risk perception.

A analysis of Factors Influencing Dental Technicians Recognition Level of Their Occupational Disease (치과기공사의 직업병인식에 영향을 미치는 요인분석)

  • Lee, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.15 no.1
    • /
    • pp.43-61
    • /
    • 1993
  • This study was conducted to determine factors influencing dental technicians recognition level of their occupational disease. After self-administered questionnaire were distributed by mail to 540 technicians clustered samplely semplely selected from dental laboratories resistered in seoul and pusan Korean Dental Laboratory Association 395 technicians responded from march 29 through April 27, 1993. The results are as follows. 1. The recognition level of an occupational disease of the total 395 respondents by sex is higher among male than female. The difference was found to be meaningful(p <.05). 2. When the recognition level of an occupational disease being tested with 45 as the highest point possible, the average point 31.41 $\pm$ 6.50 of the total respondents reflected a high level of recognition. The highly recognized items were stress, bronchial disease, hearing loss. 3. With the highest points in Wallston and Wallstons' health locus of control in personality being 54, the average points of the dental technicians in the study was 35.41 $\pm$ 4.93. 4. As for the medical care patterns, the rate was higher among local medical insurance 64.4% than none 16.8%, company medical isurance 9.2%, medical aide 6.7%, others 2.6%. As for the experience of utilization of outpatient servelies, Yes was 40.4% and 59.6%, showing a meaningful difference(t=.80, p<.05).01) accounted total variance of the factors influencing dental technicians recognition level of their occupational disease(p<.0.000), R-squaire is 0.08.

  • PDF

Incorporation of IMM-based Feature Compensation and Uncertainty Decoding (IMM 기반 특징 보상 기법과 불확실성 디코딩의 결합)

  • Kang, Shin-Jae;Han, Chang-Woo;Kwon, Ki-Soo;Kim, Nam-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.492-496
    • /
    • 2012
  • This paper presents a decoding technique for speech recognition using uncertainty information from feature compensation method to improve the speech recognition performance in the low SNR condition. Traditional feature compensation algorithms have difficulty in estimating clean feature parameters in adverse environment. Those algorithms focus on the point estimation of desired features. The point estimation of feature compensation method degrades speech recognition performance when incorrectly estimated features enter into the decoder of speech recognition. In this paper, we apply the uncertainty information from well-known feature compensation method, such as IMM, to the recognition engine. Applied technique shows better performance in the Aurora-2 DB.

Dynamic Object Detection Architecture for LiDAR Embedded Processors (라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현)

  • Jung, Minwoo;Lee, Sanghoon;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.11-19
    • /
    • 2020
  • In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

  • PDF

Speech Recognition of Korean Phonemes 'ㅅ', 'ㅈ', 'ㅊ' based on Volatility and Turning Points (변동성과 전환점에 기반한 한국어 음소 'ㅅ', 'ㅈ', 'ㅊ' 음성 인식)

  • Lee, Jae Won
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.11
    • /
    • pp.579-585
    • /
    • 2014
  • A phoneme is the minimal unit of speech, and it plays a very important role in speech recognition. This paper proposes a novel method that can be used to recognize 'ㅅ', 'ㅈ', and 'ㅊ' among Korean phonemes. The proposed method is based on a volatility indicator and a turning point indicator that are calculated for each constituting block of the input speech signal. The volatility indicator is the sum of the differences between the values of each two samples adjacent in a block, and the turning point indicator is the number of extremal points at which the direction of the increment or decrement of the values of the sample are inverted in a block. A phoneme recognition algorithm combines the two indicators to finally determine the positions at which the three target phonemes mentioned above are recognized by utilizing optimized thresholds related with those indicators. The experimental results show that the proposed method can markedly reduce the error rate of the existing methods both in terms of the false reject rate and the false accept rate.

CNN Based Human Activity Recognition System Using MIMO FMCW Radar (다중 입출력 FMCW 레이다를 활용한 합성곱 신경망 기반 사람 동작 인식 시스템)

  • Joon-sung Kim;Jae-yong Sim;Su-lim Jang;Seung-chan Lim;Yunho Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.428-435
    • /
    • 2024
  • In this paper, a human activity regeneration (HAR) system based on multiple input multiple output frequency modulation continuous wave (MIMO FMCW) radar was designed and implemented. Using point cloud data from MIMO radar sensors has advantages in terms of privacy, safety, and accuracy. For the implementation of the HAR system, a customized neural network based on PointPillars and depthwise separate convolutional neural network (DS-CNN) was developed. By processing high-resolution point cloud data through a lightweight network, high accuracy and efficiency were achieved. As a result, the accuracy of 98.27% and the computational complexity of 11.27M multiply-accumulates (Macs) were achieved. In addition, the developed neural network model was implemented on Raspberry-Pi embedded system and it was confirmed that point cloud data can be processed at a speed of up to 8 fps.

Online Face Avatar Motion Control based on Face Tracking

  • Wei, Li;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.804-814
    • /
    • 2009
  • In this paper, a novel system for avatar motion controlling by tracking face is presented. The system is composed of three main parts: firstly, LCS (Local Cluster Searching) method based face feature detection algorithm, secondly, HMM based feature points recognition algorithm, and finally, avatar controlling and animation generation algorithm. In LCS method, face region can be divided into many small piece regions in horizontal and vertical direction. Then the method will judge each cross point that if it is an object point, edge point or the background point. The HMM method will distinguish the mouth, eyes, nose etc. from these feature points. Based on the detected facial feature points, the 3D avatar is controlled by two ways: avatar orientation and animation, the avatar orientation controlling information can be acquired by analyzing facial geometric information; avatar animation can be generated from the face feature points smoothly. And finally for evaluating performance of the developed system, we implement the system on Window XP OS, the results show that the system can have an excellent performance.

  • PDF

Hangul Handwritten Character On-Line Recognition using Multilayer Perceptron (다층 퍼셉트론을 이용한 한글 필기체 온라인 인식)

  • 조정욱;이수영;박철훈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.147-153
    • /
    • 1995
  • In this paper, we propose the position- and size-independent handwritten on-line Korean character recognition system using multilayer neural networks which are trained with error back-propagation learning algorithm and the features of Hanguel consonants and vowels. Starting point, end point, and three vectors from starting point to end point of each stroke of characters inputted from mouse or tablet are applied as inputs of neural networks. If double consonants and vowels are separated by single consonants and vowels, all consonants and vowels have at most four strokes. Therefore, four neural networks learn the consonants and the vowels having each number of strokes. Also, we propose the algorithm of separating the consonants and vowels and constructing a character.

  • PDF

Face Recognition Algorithm for Embedded System (임베디드 시스템 응용을 위한 얼굴인식 알고리즘의 경량화 연구)

  • Jeong, Kang-Hun;Moon, Hyeon-Joon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.723-724
    • /
    • 2008
  • In this paper, we explore face recognition technology for embedded system. We develop an algorithm suitable for systems under ubiquitous environment. The basic requirements includes appropriate data format and ratio of feature data to achieve efficiency of algorithm. Our experiment presents a face recognition technique for handheld devices. The essential parts for face recognition based on embedded system includes; integer representation from floating point calculation and optimization for memory management.

  • PDF

A Study on Adaptive Feature-Factors Based Fingerprint Recognition (적응적 특징요소 기반의 지문인식에 관한 연구)

  • 노정석;정용훈;이상범
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1799-1802
    • /
    • 2003
  • This paper has been studied a Adaptive feature-factors based fingerprints recognition in many biometrics. we study preprocessing and matching method of fingerprints image in various circumstances by using optical fingerprint input device. The Fingerprint Recognition Technology had many development until now. But, There is yet many point which the accuracy improves with operation speed in the side. First of all we study fingerprint classification to reduce existing preprocessing step and then extract a Feature-factors with direction information in fingerprint image. Also in the paper, we consider minimization of noise for effective fingerprint recognition system.

  • PDF