• 제목/요약/키워드: recognition point

검색결과 1,214건 처리시간 0.026초

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

컨볼루셔널 신경망과 케스케이드 안면 특징점 검출기를 이용한 얼굴의 특징점 분류 (Facial Point Classifier using Convolution Neural Network and Cascade Facial Point Detector)

  • 유제훈;고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.241-246
    • /
    • 2016
  • Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.

A User-friendly Remote Speech Input Method in Spontaneous Speech Recognition System

  • Suh, Young-Joo;Park, Jun;Lee, Young-Jik
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.38-46
    • /
    • 1998
  • In this paper, we propose a remote speech input device, a new method of user-friendly speech input in spontaneous speech recognition system. We focus the user friendliness on hands-free and microphone independence in speech recognition applications. Our method adopts two algorithms, the automatic speech detection and the microphone array delay-and-sum beamforming (DSBF)-based speech enhancement. The automatic speech detection algorithm is composed of two stages; the detection of speech and nonspeech using the pitch information for the detected speech portion candidate. The DSBF algorithm adopts the time domain cross-correlation method as its time delay estimation. In the performance evaluation, the speech detection algorithm shows within-200 ms start point accuracy of 93%, 99% under 15dB, 20dB, and 25dB signal-to-noise ratio (SNR) environments, respectively and those for the end point are 72%, 89%, and 93% for the corresponding environments, respectively. The classification of speech and nonspeech for the start point detected region of input signal is performed by the pitch information-base method. The percentages of correct classification for speech and nonspeech input are 99% and 90%, respectively. The eight microphone array-based speech enhancement using the DSBF algorithm shows the maximum SNR gaing of 6dB over a single microphone and the error reductin of more than 15% in the spontaneous speech recognition domain.

  • PDF

SoC 하드웨어 설계를 위한 얼굴 인식 알고리즘의 고정 소수점 모델 구현 및 성능 분석 (Fixed-Point Modeling and Performance Analysis of a Face Recognition Algorithm For Hardware Design)

  • 김영진;정용진
    • 전자공학회논문지CI
    • /
    • 제44권1호
    • /
    • pp.102-112
    • /
    • 2007
  • 본 논문에서는 얼굴 인식 알고리즘을 하드웨어로 설계하여 임베디드 시스템에 적용하기 위해 고정 소수점 모델을 구성하고 그에 근거한 하드웨어 구조를 제안하였다. 얼굴 인식 알고리즘은 학습된 데이터를 사용하여 입력 영상에서 얼굴을 검출하고 검출된 얼굴 영상에서 두 눈을 찾아 얼굴 검증 단계를 거치며, 얼굴 검증단계에서 얻어진 두 눈의 위치를 이용하여 얼굴 인식 단계에서 필요한 얼굴 특징 벡터를 연산하고 저장 또는 비교를 통하여 얼굴 인식을 수행한다. 부동 소수점 모델과 고정 소수점 모델의 유사성은 부동 소수점 모델에서 검출된 영상을 고정 소수점 모델에서 수행하여 비교하였으며 성능이 0.2% 오차 범위 안에서 일치하는 고정 소수점 모델을 구성하였다.

As-built modeling of piping system from terrestrial laser-scanned point clouds using normal-based region growing

  • Kawashima, Kazuaki;Kanai, Satoshi;Date, Hiroaki
    • Journal of Computational Design and Engineering
    • /
    • 제1권1호
    • /
    • pp.13-26
    • /
    • 2014
  • Recently, renovations of plant equipment have been more frequent because of the shortened lifespans of the products, and as-built models from large-scale laser-scanned data is expected to streamline rebuilding processes. However, the laser-scanned data of an existing plant has an enormous amount of points, captures intricate objects, and includes a high noise level, so the manual reconstruction of a 3D model is very time-consuming and costly. Among plant equipment, piping systems account for the greatest proportion. Therefore, the purpose of this research was to propose an algorithm which could automatically recognize a piping system from the terrestrial laser-scanned data of plant equipment. The straight portion of pipes, connecting parts, and connection relationship of the piping system can be recognized in this algorithm. Normal-based region growing and cylinder surface fitting can extract all possible locations of pipes, including straight pipes, elbows, and junctions. Tracing the axes of a piping system enables the recognition of the positions of these elements and their connection relationship. Using only point clouds, the recognition algorithm can be performed in a fully automatic way. The algorithm was applied to large-scale scanned data of an oil rig and a chemical plant. Recognition rates of about 86%, 88%, and 71% were achieved straight pipes, elbows, and junctions, respectively.

레이저 슬릿빔과 CCD 카메라를 이용한 3차원 영상인식 (3D image processing using laser slit beam and CCD camera)

  • 김동기;윤광의;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.40-43
    • /
    • 1997
  • This paper presents a 3D object recognition method for generation of 3D environmental map or obstacle recognition of mobile robots. An active light source projects a stripe pattern of light onto the object surface, while the camera observes the projected pattern from its offset point. The system consists of a laser unit and a camera on a pan/tilt device. The line segment in 2D camera image implies an object surface plane. The scaling, filtering, edge extraction, object extraction and line thinning are used for the enhancement of the light stripe image. We can get faithful depth informations of the object surface from the line segment interpretation. The performance of the proposed method has demonstrated in detail through the experiments for varies type objects. Experimental results show that the method has a good position accuracy, effectively eliminates optical noises in the image, greatly reduces memory requirement, and also greatly cut down the image processing time for the 3D object recognition compared to the conventional object recognition.

  • PDF

TMS320VC5510 DSK를 이용한 음성인식 로봇 (The Robot Speech Recognition using TMS320VC5510 DSK)

  • 최지현;정익주
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.211-218
    • /
    • 2007
  • As demands for interaction of humans and robots are increasing, robots are expected to be equipped with intelligibility which humans have. Especially, for natural communication, hearing capabilities are so essential that speech recognition technology for robot is getting more important. In this paper, we implement a speech recognizer suitable for robot applications. One of the major problem in robot speech recognition is poor speech quality captured when a speaker talks distant from the microphone a robot is mounted with. To cope with this problem, we used wireless transmission of commands recognized by the speech recognizer implemented using TMS320VC5510 DSK. In addition, as for implementation, since TMS320VC5510 DSP is a fixed-point device, we represent efficient realization of HMM algorithm using fixed-point arithmetic.

  • PDF

자율주행을 위한 라이다 기반 객체 인식 및 분류 (Lidar Based Object Recognition and Classification)

  • 변예림;박만복
    • 자동차안전학회지
    • /
    • 제12권4호
    • /
    • pp.23-30
    • /
    • 2020
  • Recently, self-driving research has been actively studied in various institutions. Accurate recognition is important because information about surrounding objects is needed for safe autonomous driving. This study mainly deals with the signal processing of LiDAR among sensors for object recognition. LiDAR is a sensor that is widely used for high recognition accuracy. First, we clustered and tracked objects by predicting relative position and speed of objects. The characteristic points of all objects were extracted using point cloud data of each objects through proposed algorithm. The Classification between vehicle and pedestrians is estimated using number of characteristic points and distances among characteristic points. The algorithm for classifying cars and pedestrians was implemented and verified using test vehicle equipped with LiDAR sensors. The accuracy of proposed object classification algorithm was about 97%. The classification accuracy was improved by about 13.5% compared with deep learning based algorithm.

시공간상의 궤적 분석에 의한 제스쳐 인식 (Gesture Recognition by Analyzing a Trajetory on Spatio-Temporal Space)

  • 민병우;윤호섭;소정;에지마 도시야끼
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권1호
    • /
    • pp.157-157
    • /
    • 1999
  • Researches on the gesture recognition have become a very interesting topic in the computer vision area, Gesture recognition from visual images has a number of potential applicationssuch as HCI (Human Computer Interaction), VR(Virtual Reality), machine vision. To overcome thetechnical barriers in visual processing, conventional approaches have employed cumbersome devicessuch as datagloves or color marked gloves. In this research, we capture gesture images without usingexternal devices and generate a gesture trajectery composed of point-tokens. The trajectory Is spottedusing phase-based velocity constraints and recognized using the discrete left-right HMM. Inputvectors to the HMM are obtained by using the LBG clustering algorithm on a polar-coordinate spacewhere point-tokens on the Cartesian space .are converted. A gesture vocabulary is composed oftwenty-two dynamic hand gestures for editing drawing elements. In our experiment, one hundred dataper gesture are collected from twenty persons, Fifty data are used for training and another fifty datafor recognition experiment. The recognition result shows about 95% recognition rate and also thepossibility that these results can be applied to several potential systems operated by gestures. Thedeveloped system is running in real time for editing basic graphic primitives in the hardwareenvironments of a Pentium-pro (200 MHz), a Matrox Meteor graphic board and a CCD camera, anda Window95 and Visual C++ software environment.

로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식 (Robot vision system for face recognition using fuzzy inference from color-image)

  • 이주신
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권2호
    • /
    • pp.106-110
    • /
    • 2014
  • 본 논문에서는 로봇의 시각시스템에 효과적으로 적용할 수 있는 얼굴인식 방법을 제안하였다. 제안한 알고리즘은 얼굴영상의 색상추출과 특징점을 이용하여 인식한다. 색상추출은 피부색, 눈동자색, 입술색의 차를 이용하였으며, 특징정보는 눈, 코, 입에서 추출된 특징점 사이의 거리, 거리 비율, 각도, 면적의 차를 특징 파라미터로 이용하였다. 특징 파라미터를 퍼지화 데이터로 멤버십 함수를 생성한 후, 유사도를 평가하여 얼굴을 인식하였다. 입력받은 정면 칼라 영상으로 실험한 결과 96%의 인식율을 나타내었다.