• 제목/요약/키워드: recognition algorithm

검색결과 3,560건 처리시간 0.028초

소규모 합성곱 신경망을 사용한 연령 및 성별 분류 (Age and Gender Classification with Small Scale CNN)

  • ;류재흥
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.99-104
    • /
    • 2022
  • 인공지능은 놀라운 이점으로 우리 삶의 중요한 부분을 차지하고 있다. 기계는 이미지에서 물체를 인식하는 것, 특히 사람들을 정확한 나이와 성별 그룹으로 분류하는 것에 있어서 인간을 능가하고 있다. 이러한 측면에서 나이와 성별 분류는 최근 수십 년 동안 컴퓨터 비전 연구자들 사이에서 뜨거운 주제 중 하나였다. 심층 합성곱 신경망(CNN) 모델의 배포는 최첨단 성능을 달성했다. 그러나 대부분의 CNN 기반 아키텍처는 수십 개의 훈련 매개 변수로 매우 복잡하기 때문에 많은 계산 시간과 자원이 필요하다. 이러한 이유로 기존 방법에 비해 훈련 매개 변수와 훈련 시간이 현저히 적은 새로운 CNN기반 분류 알고리즘을 제안한다. 덜 복잡함에도 불구하고 우리 모델은 UTKFace 데이터 세트에서 연령 및 성별 분류의 더 나은 정확도를 보여준다.

2D 영상센서 기반 6축 로봇 팔 원격제어 (A Remote Control of 6 d.o.f. Robot Arm Based on 2D Vision Sensor)

  • 현웅근
    • 한국전자통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.933-940
    • /
    • 2022
  • 2차원 영상 센서를 이용하여 조종자의 3차원 손 위치를 인식하고 이를 기반으로 원격으로 6축 로봇팔을 제어하는 시스템을 개발하였다. 시스템은 물체의 영상정보를 인식하는 2차원 영상 센서 모듈, 영상정보를 로봇팔 제어 명령어로 전환하는 알고리즘, 자체 제작한 6축 로봇팔 및 제어 시스템으로 구성된다. 영상 센서는 조종자가 착용한 장갑의 모양과 색을 인지하여 크기 및 위치정보를 출력하게 되며, 본 연구에서는 이러한 위치 및 물체를 둘러싼 크기 정보를 이용하여 로봇 선단의 속도를 제어한다. 연구 방법의 검증은 자체 제작된 6축 로봇으로 실행하였으며, 조종자의 손동작 조종에 의한 실험을 통해 제안한 영상정보 제어 및 로봇 선단 제어 방법이 성공적으로 동작함을 확인하였다.

탁구 로봇을 위한 빠른 자세 분류 시스템 개발 (Development of Fast Posture Classification System for Table Tennis Robot)

  • 진성호;권영우;김윤정;박미영;안재훈;강호선;최지욱;이인호
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.463-476
    • /
    • 2022
  • In this paper, we propose a table tennis posture classification system using a cooperative robot to develop a table tennis robot that can be trained like a real game. The most ideal table tennis robot would be a robot with a high joint driving speed and a high degree of freedom. Therefore, in this paper, we intend to use a cooperative robot with sufficient degrees of freedom to develop a robot that can be trained like a real game. However, cooperative robots have the disadvantage of slow joint driving speed. These shortcomings are expected to be overcome through quick recognition. Therefore, in this paper, we try to quickly classify the opponent's posture to overcome the slow joint driving speed. To this end, learning about dynamic postures was conducted using image data as input, and finally, three classification models were created and comparative experiments and evaluations were performed on the designated dynamic postures. In conclusion, comparative experimental data demonstrate the highest classification accuracy and fastest classification speed in classification models using MLP (Multi-Layer Perceptron), and thus demonstrate the validity of the proposed algorithm.

진동신호 기계학습을 통한 프레스 금형 상태 인지 (State recognition of fine blanking stamping dies through vibration signal machine learning)

  • 홍석관;정의철;이성희;김옥래;김종덕
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.1-6
    • /
    • 2022
  • Fine blanking is a press processing technology that can process most of the product thickness into a smooth surface with a single stroke. In this fine blanking process, shear is an essential step. The punches and dies used in the shear are subjected to impacts of tens to hundreds of gravitational accelerations, depending on the type and thickness of the material. Therefore, among the components of the fine blanking mold (dies), punches and dies are the parts with the shortest lifespan. In the actual production site, various types of tool damage occur such as wear of the tool as well as sudden punch breakage. In this study, machine learning algorithms were used to predict these problems in advance. The dataset used in this paper consisted of the signal of the vibration sensor installed in the tool and the measured burr size (tool wear). Various features were extracted so that artificial intelligence can learn effectively from signals. It was trained with 5 features with excellent distinguishing performance, and the SVM algorithm performance was the best among 33 learning models. As a result of the research, the vibration signal at the time of imminent tool replacement was matched with an accuracy of more than 85%. It is expected that the results of this research will solve problems such as tool damage due to accidental punch breakage at the production site, and increase in maintenance costs due to prediction errors in punch exchange cycles due to wear.

Implementation of Public Address System Using Anchor Technology

  • Seungwon Lee;Soonchul Kwon;Seunghyun Lee
    • International journal of advanced smart convergence
    • /
    • 제12권3호
    • /
    • pp.1-12
    • /
    • 2023
  • A public address (PA) system installed in a building is a system that delivers alerts, announcements, instructions, etc. in an emergency or disaster situation. As for the products used in PA systems, with the development of information and communication technology, PA products with various functions have been introduced to the market. PA systems recently launched in the market may be connected through a single network to enable efficient management and operation, or use voice recognition technology to deliver quick information in case of an emergency. In addition, a system capable of locating a user inside a building using a location-based service and guiding or responding to a safe area in the event of an emergency is being launched on the market. However, the new PA systems currently on the market add some functions to the existing PA system configuration to make system operation more convenient, but they do not change the complex PA system configuration to reduce facility costs, maintenance, and management costs. In this paper, we propose a novel PA system configuration for buildings using audio networks and control hierarchy over peer-to-peer (Anchor) technology based on audio over IP (AoIP), which simplifies the complex PA system configuration and enables convenient operation and management. As a result of the study, through the emergency signal processing algorithm, fire broadcasting was made possible according to the detection of the existence of a fire signal in the Anchor system. In addition, the control device of the PA system was replaced with software to reduce the equipment installation cost, and the PA system configuration was simplified. In the future, it is expected that the PA system using Anchor technology will become the standard for PA facilities.

지능형 OCR 시스템을 위한 한글 필기체 생성 및 분류 모델에 관한 연구 (A Study on Hangul Handwriting Generation and Classification Mode for Intelligent OCR System)

  • 백진성;서지윤;정상중;정도운
    • 융합신호처리학회논문지
    • /
    • 제23권4호
    • /
    • pp.222-227
    • /
    • 2022
  • 본 논문에서는 다양한 산업분야에 적용 가능한 딥러닝 알고리즘 기반의 한글 필기체 생성 및 분류 모델을 구현하였다. 구현된 GAN 기반의 한글 필기체 생성 모델과 CNN 기반의 한글 필기체 분류 모델 2가지로 구성되어 있다. GAN 모델은 가짜 한글 필기체 데이터를 생성하기 위한 생성자 모델과 가짜 필기체 데이터를 판별하기 위한 판별자 모델로 구성된다. CNN 모델의 경우 'PHD08' 데이터세트를 활용하여 모델의 학습을 수행하였으며, 학습 결과 92.45% 정확도로 한글 필기체를 분류하는 것을 확인하였다. 구현된 GAN 모델을 통해 생성된 한글 필기체 데이터를 기존 CNN 모델의 학습 데이터세트와 통합하여 분류 모델의 성능평가를 진행한 결과 96.86%로 기존 분류 성능보다 우수하게 나타남을 확인하였다.

불규칙 조명 환경에 강인한 번호판 문자 분리 기법 (Robust Scheme of Segmenting Characters of License Plate on Irregular Illumination Condition)

  • 김병현;한영준;한헌수
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권11호
    • /
    • pp.61-71
    • /
    • 2009
  • 자동차의 번호판은 차량의 등록 정보를 확인할 수 있는 유일한 방법이다. 불법 주정차 단속 및 주차 관리 시스템에 차량의 등록 정보를 확인하기 위해 카메라를 이용한 무인 인식시스템의 개발이 활발히 연구되고 있다. 하지만, 일반 도로상에서 날씨나 주변 장애물들은 자동차 번호판 상에 조명 변화를 일으켜 번호판 문자의 추출을 어렵게 한다. 본 논문은 번호판 영상을 개선하여 조명변화에 강인한 문자 추출 알고리즘을 제안한다. 제안하는 기법은 번호판 영상의 명암 대비도를 높이기 위해 Chi-Square 확률 밀도 함수를 이용한다. 또한, 정확한 문자영역을 추출하기 위해, 적응적인 문턱값을 적용함으로써 고품질의 이진화 영상을 얻는다. 번호판의 문자들을 추출하는 일련의 과정에서 방해가 되는 잡음들을 전처리와 레이블링을 통해 제거한다. 마지막으로 번호판의 문자들은 번호판의 기하학적 특징을 이용한 이진화 영상의 프로파일링으로부터 추출된다.

Using Roots and Patterns to Detect Arabic Verbs without Affixes Removal

  • Abdulmonem Ahmed;Aybaba Hancrliogullari;Ali Riza Tosun
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.1-6
    • /
    • 2023
  • Morphological analysis is a branch of natural language processing, is now a rapidly growing field. The fundamental tenet of morphological analysis is that it can establish the roots or stems of words and enable comparison to the original term. Arabic is a highly inflected and derivational language and it has a strong structure. Each root or stem can have a large number of affixes attached to it due to the non-concatenative nature of Arabic morphology, increasing the number of possible inflected words that can be created. Accurate verb recognition and extraction are necessary nearly all issues in well-known study topics include Web Search, Information Retrieval, Machine Translation, Question Answering and so forth. in this work we have designed and implemented an algorithm to detect and recognize Arbic Verbs from Arabic text.The suggested technique was created with "Python" and the "pyqt5" visual package, allowing for quick modification and easy addition of new patterns. We employed 17 alternative patterns to represent all verbs in terms of singular, plural, masculine, and feminine pronouns as well as past, present, and imperative verb tenses. All of the verbs that matched these patterns were used when a verb has a root, and the outcomes were reliable. The approach is able to recognize all verbs with the same structure without requiring any alterations to the code or design. The verbs that are not recognized by our method have no antecedents in the Arabic roots. According to our work, the strategy can rapidly and precisely identify verbs with roots, but it cannot be used to identify verbs that are not in the Arabic language. We advise employing a hybrid approach that combines many principles as a result.

Artificial neural network model for predicting sex using dental and orthodontic measurements

  • Sandra Anic-Milosevic;Natasa Medancic;Martina Calusic-Sarac;Jelena Dumancic;Hrvoje Brkic
    • 대한치과교정학회지
    • /
    • 제53권3호
    • /
    • pp.194-204
    • /
    • 2023
  • Objective: To investigate sex-specific correlations between the dimensions of permanent canines and the anterior Bolton ratio and to construct a statistical model capable of identifying the sex of an unknown subject. Methods: Odontometric data were collected from 121 plaster study models derived from Caucasian orthodontic patients aged 12-17 years at the pretreatment stage by measuring the dimensions of the permanent canines and Bolton's anterior ratio. Sixteen variables were collected for each subject: 12 dimensions of the permanent canines, sex, age, anterior Bolton ratio, and Angle's classification. Data were analyzed using inferential statistics, principal component analysis, and artificial neural network modeling. Results: Sex-specific differences were identified in all odontometric variables, and an artificial neural network model was prepared that used odontometric variables for predicting the sex of the participants with an accuracy of > 80%. This model can be applied for forensic purposes, and its accuracy can be further improved by adding data collected from new subjects or adding new variables for existing subjects. The improvement in the accuracy of the model was demonstrated by an increase in the percentage of accurate predictions from 72.0-78.1% to 77.8-85.7% after the anterior Bolton ratio and age were added. Conclusions: The described artificial neural network model combines forensic dentistry and orthodontics to improve subject recognition by expanding the initial space of odontometric variables and adding orthodontic parameters.

예비교사 대상 비대면 SW·AI 교육 효과 분석 (Analysis of the effects of non-face-to-face SW·AI education for Pre-service teachers)

  • 박선주
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.315-320
    • /
    • 2021
  • 미래사회 변화에 대비하기 위하여 SW·AI 교육은 필수적이다. 본 논문에서는 예비교사를 대상으로 비대면 SW·AI 교육을 실시한 후 SW 기초교육 효과성 측정도구를 사용하여 교육 전과 후의 SW 교육 효과성을 측정하였다. 분석 결과, 전체 평균과 '컴퓨팅 사고력', 'SW 문해력' 영역의 평균이 유의미하게 증가하였고, '컴퓨팅 사고력' 영역의 분해, 패턴인식, 추상화, 알고리즘 하위영역에서도 모두 교육 전과 후의 평균의 차이가 통계적으로 유의미하게 나타났다. 학생들은 SW·AI 교육을 통해 SW 교육의 필요성과 컴퓨팅 사고력의 중요성을 인식할 뿐만 아니라 정보를 분해하고 패턴을 인식하고 추출하며 문제해결과정을 표현하는 과정을 이해함을 알 수 있었다. 이는 비대면 SW·AI 교육도 SW가 중요함을 인식시키는 것을 넘어 컴퓨팅 사고력, SW 문해력을 향상시키는 효과를 나타내고 있음을 알 수 있다.

  • PDF