References
- Ameur, Mohamed Seghir Hadj, Farid Meziane, and Ahmed Guessoum. "Arabic machine translation: A survey of the latest trends and challenges." Computer Science Review 38 (2020): 100305.
- Guellil, Imane, et al. "Arabic natural language processing: An overview." Journal of King Saud University-Computer and Information Sciences 33.5 (2021): 497-507. https://doi.org/10.1016/j.jksuci.2019.02.006
- Alkhatib, Manar, and Khaled Shaalan. "The key challenges for Arabic machine translation." Intelligent Natural Language Processing: Trends and Applications. Springer, Cham, 2018. 139-156.
- Habash, Nizar, and Fatiha Sadat. "Arabic preprocessing schemes for statistical machine translation." Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers. 2006.
- Tahat, Abdelrazzaq. "Morphological Patterns of Personal Naming Practice: A Case Study of Non-Concatenative Arabic Language." (2020).
- Zayed, O. H., & El-Beltagy, S. R. (2012, May). Person name extraction from modern standard Arabic or colloquial text. In 2012 8th International Conference on Informatics and Systems (INFOS) (pp. NLP-44). IEEE.
- Abdallah, S., Shaalan, K., & Shoaib, M. (2012, March). Integrating rule-based system with classification for arabic named entity recognition. In International Conference on Intelligent Text Processing and Computational Linguistics (pp. 311-322). Springer, Berlin, Heidelberg.
- Mansouri, A., Affendey, L. S., & Mamat, A. (2008). Named entity recognition using a new fuzzy support vector machine. IJCSNS, 8(2), 320.
- Chiu, J. P., & Nichols, E. (2016). Named entity recognition with bidirectional LSTM-CNNs. Transactions of the association for computational linguistics, 4, 357-370. https://doi.org/10.1162/tacl_a_00104
- Alasmari, Jawharah, Janet CE Watson, and Eric Atwell. "A comparative analysis of verb tense and aspect in Arabic and English using Google Translate." International Journal on Islamic Applications in Computer Science and Technology 5.3(2017): 9-13.
- Shaalan, Khaled, Marwa Magdy, and Aly Fahmy. "Analysis and feedback of erroneous Arabic verbs." Natural Language Engineering 21.2 (2015): 271-323. https://doi.org/10.1017/S1351324913000223
- Ray, Santosh K., and Khaled Shaalan. "A review and future perspectives of arabic question answering systems." IEEE Transactions on Knowledge and Data Engineering 28.12(2016): 3169-3190. https://doi.org/10.1109/TKDE.2016.2607201
- Muhammed, Muhammed H., Bassim M. Salih, and Omer K. Jasim. "An Emerging Standard Miniaturization in Arabic Morphological Analysis." 2018 1st Annual International Conference on Information and Sciences (AiCIS). IEEE, 2018.
- Mourad Gridach and Noureddine Chenfour, Developing a New Approach for Arabic Morphological Analysis and Generation, International Joint Conference on Natural Language Processing,Vol.2, 2011.
- Mohammed Attia, Pavel Pecina, Antonio Toral, Lamia Tounsi and Josef van Genabith, An Open-Source Finite State Morphological Transducer for Modern Standard Arabic, FSMNLP '11 Proceedings of the 9th International Workshop on Finite State Methods and Natural Language Processing, 2011.
- AbdelRahim A. Elmadany, Sherif M. Abdou and Mervat Gheith, A Survey of Arabic Dialogues Understanding for Spontaneous Dialogues and Instant Message, International Journal on Natural Language Computing (IJNLC) Vol. 4, No.2, 2015.
- A. FARGHALY and K. SHAALAN, Arabic Natural Language Processing: Challenges and Solutions, ACM Trans. Asian Language Information Processing, Vol. 8 No. 4, 2009.
- Alshalabi, H., Tiun, S., Omar, N., & Albared, M. (2013). Experiments on the use of feature selection and machine learning methods in automatic malay text categorization. Procedia Technology, 11, 748-754. https://doi.org/10.1016/j.protcy.2013.12.254
- Alkhudair, Raghad, and Mohammad Aljutaily. "A prosodic morphophonological analysis of the trilateral perfect passive verbs in Qassimi Arabic." Heliyon 8.8 (2022): e10008.
- Azman, Bakeel. "Root identification tool for Arabic verbs." IEEE Access 7 (2019): 45866-45871. https://doi.org/10.1109/ACCESS.2019.2908177
- Kambhatla, Nandakishore, and Imed Zitouni. "Systems and methods for automatic semantic role labeling of high morphological text for natural language processing applications." U.S. Patent No. 8,527,262. 3 Sep. 2013.
- Ramadhan, Teguh Ikhlas, Moch Arif Bijaksana, and Arief Fatchul Huda. "Rule based pattern type of verb identification algorithm for the holy qur'an." Procedia Computer Science 157 (2019): 337-344. https://doi.org/10.1016/j.procs.2019.08.175
- N. Habash, ''Arabic morphological representations for machine translation,'' Arabic Computational Morphology. Springer, 2007, pp. 263-285.
- Boudchiche, M., & Mazroui, A. (2018, April). Improving the Arabic root extraction by using the quadratic splines. In 2018 International Conference on Intelligent Systems and Computer Vision (ISCV) (pp. 1-5). IEEE.
- Yousfi, A. "The morphological analysis of Arabic verbs by using the surface patterns." IJCSI International Journal of Computer Science Issues 7.3 (2010): 11.
- Hegazi, M. O., Al-Dossari, Y., Al-Yahy, A., Al-Sumari, A., & Hilal, A. (2021). Preprocessing Arabic text on social media. Heliyon, 7(2), e06191.
- El-Affendi, Mohammed Ahmed. "An LVQ connectionist solution to the non-determinacy problem in Arabic morphological analysis: a learning hybrid algorithm." Natural Language Engineering 8.1 (2002): 3-23. https://doi.org/10.1017/S1351324901002753
- Shrestha, B. B., & Bal, B. K. (2020, December). Named-entity based sentiment analysis of Nepali news media texts. In Proceedings of the 6th workshop on natural language processing techniques for educational applications (pp. 114-120).
- Almusaddar, M., 2014. Improving Arabic Light Stemming in Information Retrieval Systems. Thesis MSC Thesis. Computer Engineering Department, Faculty of Engineering, Research and Postgraduate Affairs. Islamic University, Gaza, Palestine
- Siswoyo, Siswoyo. "SIMILARITIES AND DIFFERENCES BETWEEN ENGLISH AND ARABIC VERB." Jurnal Smart 2.2 (2016).
- Ismail, Samia Ben, Sirine Boukedi, and Kais Haddar. "Transformation system to generate derivational forms of an Arabic verb with HPSG." 2017 International Conference on Engineering & MIS (ICEMIS). IEEE, 2017.
- Othman, Mohamed Tahar Ben, Mohammed Abdullah AlHagery, and Yahya Muhammad El Hashemi. "Arabic text processing model: Verbs roots and conjugation automation." IEEE Access 8 (2020): 103913-103923. https://doi.org/10.1109/ACCESS.2020.2999259
- Mohammed, Rafea. "New Arabic stemming based on Arabic patterns." Iraqi J. Sci. 57.3 (2016): 2324-2330.
- Abd Alameer, A. Q. (2017). Finding the similarity between two Arabic texts. Iraqi Journal of Science, 152-162.
- Farghaly, A., & Shaalan, K. (2009). Arabic natural language processing: Challenges and solutions. ACM Transactions on Asian Language Information Processing (TALIP), 8(4), 1-22. https://doi.org/10.1145/1644879.1644881
- Alshalabi, H., Tiun, S., Omar, N., AL-Aswadi, F. N., & Alezabi, K. A. (2021). Arabic light-based stemmer using new rules. Journal of King Saud University-Computer and Information Sciences.
- Thalji, N., Hanin, N. A., Al-Hakeem, S., Hani, W. B., & Thalji, Z. (2018). A novel rule-based root extraction algorithm for Arabic language. International Journal of Advanced