• Title/Summary/Keyword: reclaimer

Search Result 14, Processing Time 0.029 seconds

The development of reclaimer automatic system for raw material (원료 Reclaimer 자동화 시스템 개발)

  • 박형근;문성룡
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1276-1279
    • /
    • 1996
  • Reclaimer in the raw material yard is being used to dig iron and coal so that they transfer to main blast furnace. A newly automatic system was developed and tested in the raw yard of Kwangyang iron making. The concept of the proposed system is based on the 3-dimensional detection of pile and auto-landing on the surface it.

  • PDF

The inverse kinematics and redundancy of reclaimers (불출기의 여유자유도와 역기구학 해)

  • Shin, Ki-Tae;Choi, Chin-Thoi;Lee, Kwan-Hee;Ahn, Hyun-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.469-475
    • /
    • 1997
  • A method for solving the inverse kinematic problem of reclaimer is presented in this paper. The reclaimers in the raw yard are being used to dig raws and transfer them to the blast furnaces. The kinematic configuration of the reclaimer is different from that of commercially available robots, because it has a rotating disk with several buckets at the end of the boom to dig raws. The reclaimer has a redundancy due to the rotating disk : the degrees of freedom are greater than the number of forward kinematic equations. A plane equation in the 3-dimensional space is determined by using several points adjacent to the reclaiming point of the raw ores pile. A constraint is obtained from the relation ship of the plane equation and trajectories of the bucket of the reclaimer. Finally, a solution of the inverse kinematics of the reclaimer is determined by a numerical method.

  • PDF

A method for trajectory landing position of bucket of reclaimer (원료 불출기 자동화를 위한 원료 불출 착지점 결정 방법)

  • 이관희;안현식;신기태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.363-366
    • /
    • 1996
  • A Reclaimer is used to dig raw material from a pile and transfer it to the blast furnaces. In this paper, we propose the method for trajectory landing position of bucket of reclaimer to fully automate the reclaimer. We use 3-dimensional range finder to detect the shape of a pile. From the image which was detected by 3-dimensional range finder, we extract the outline paths which has same height, and then determine digging height. Finally, we compute the landing point from the outline path. We can prevent overload which can occur on the bucket wheel and guarantee maximum production rate by using the algorithm for determining the landing position on the piles.

  • PDF

The Study of Reclaimer of Antiseptic Solution for Winter-sowing Prevention of a Vehicle Disinfector at Livestock Farm (축산농가 차량소독기의 동파방지를 위한 약액 회수장치에 관한 연구)

  • Kim, W.;Lee, S.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • This study was conducted to develop a reclaimer of the vehicle disinfector to be used at livestock fm. The reclaimer was mainly consisted of ball-valves, geared motors and one-chip processor, and the purpose of the system was to prevent liquid freezing as well as decrease environmental pollution of antiseptic solution. The properly spraying pressure of the vehicle disinfector was found over 1.96 MPa at 1m of the spraying range. While certain amount of the antiseptic solution remained in the injection-pipes, the spray starting time was found not making any significant effect on the remained amount of the antiseptic solution. The amounts of the antiseptic solution remained in the injection-pipes were 50 ml and 270 ml in average, respectively with and without the use of the reclaimer. The reclaimer was the most effective when the connection of the injection-pipe and sprayer line was located below the side-injection-pipe and then connected to the injection-pipe located at the bottom of vehicles.

  • PDF

Reclaimer Control: Modeling , Parameter Estimation, and a Robust Smith Predictor Design (원료채집기의 제어: 모델링, 계수추정, 견실한 스미스 예측기의 설계)

  • Kim, Sung-Hoon;Hong, Keum-Shik;Kang, Dong-Hunn
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.923-931
    • /
    • 1999
  • In this paper, a modeling and a robust time-delay control for the reclaimer are investigated. Supplying the same amount of a raw material throughout the reclamation process from the raw yard to a sinter plant is important to keep the quality of the molten steel uniform in blast furnaces. As the actual parameter values of the reclaimer are not available, the boom rotational dynamics are modeled as a second order differential equation with unknown coefficients. The unknown parameters in the nominal model are estimated using a recursive estimation method. Another important factor in the control design of the reclaimer is the large time-delay in output measurement. Assuming a multiplicative uncertainty, that accounts for both the unstructured uncertainty neglected in the modeling and the structured uncertainty contained in the parameter estimation, a robust Smith predictor is designed. A robust stability criterion for the multiplicative uncertainty is also derived. Following the work of Goodwin et al. [4], a quantifying procedure of the multiplicative uncertainty bound, through experiments , is described. Experimental and simulation results are provided.

  • PDF

Web Based Remote Control System of Reclaimer Using Wireless PDA

  • Lee, Kwan-Hee;Bae, Hyo-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.174.6-174
    • /
    • 2001
  • Various raw materials from which iron and steel are made are unloaded from ship and then piled up at the designated yard. The equipment that piles up the raw materials is called Stacker and these materials are then dipped out and sent to unit factories such as blast furnace and cokes using the equipment called Reclaimer. The Reclaimer has an actual size of 16 meter high and 50 meter long and runs back and forth over the rail of about 1.2 km, carrying the materials to each unit factory. Until now, in most cases, Stacker and Reclaimer are manually operated. At POSCO, four workers on a shift basis sit in the operation room as shown in the picture, pile up and dip out the materials, checking them out with their own eyes ...

  • PDF

Development of Teleoperation System of rRclaimers (불출기의 원격운전 시스템 개발)

  • 신기태;최진태;이관희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1465-1468
    • /
    • 1996
  • In this paper, we suggest tele operation system of reclaimers and some side technologies for performing easy operation. The reclaimers in the raw ore yard are being used to dig ironstone and transfer it to the blast furnaces. The side technologies are to determine the minimum stacking distance between piles, collision avoidance of reclaimers and stackers. For simplicity, the pile and the boom of the reclaimer are mathematically modeled as a cone and a line in the 3-dimensional space respectively. The minimum stacking distance is obtained using the condition that the cone and the line never met. The modeling errors for the pile and reclaimers are compensated by considering the width of their reclaimer. We have also proposed a 2-stage collision detection method for the moving machines. The reclaiming heights of the pile are set to predetermined ones to make tele-operation easy.

  • PDF

Inverse Kinematics of a Serial Manipulator : Redundancy and a Closed-rom Solution by Exploting Geomertiric Constraints (원료불출기의 역기구학 : 여유자유도와 구속조건을 이용한 닫힌 형태의 해)

  • 홍금식;김영민;최진태;신기태;염영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.661-665
    • /
    • 1996
  • An inverse kinemetics problem of a reclaimer which digs and transports ironstones or coals in the raw yard is investigated. Because of the special features of the reclaimer of which scooping buckets are attached around the rotating drum at the end of boom, kinematic redundancy occurs in determining the joint varialbes For a given reclaiming point in space the forward kinematics yields 3 equations, however the number of involved variables in the equations are four. A plane equation approximating the surface near a reclaiming point is obtained by considering 8 adjacent points surrounding the reclaiming point. One extra equation to overcome redunduncyis further obtained from the condition that the normal vector at a reclaiming point is perpendicular to the plane. An approximate solution for a simplified problem is first discussed, Numerical solution for the oritinal nonlinear porblem with a constraint equation is also investigated. Finally a closed form solution which is not exact but sufficiently close enough is proposed by exploiting geometric constraint.

  • PDF

A vision system for autonomous material handling by static and dynamic range finding (정적 및 동적 range 검출에 의한 원료 처리 자동화용 vision 시스템)

  • 안현식;최진태;이관희;신기태;하영호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.59-70
    • /
    • 1997
  • Until now, considerable progress has been made in the application of range finding techanique performing direct 3-D measurement from the object. However, ther are few use of the method in the area of the application of material handing. We present a range finding vision system consisting of static and dynamic range finders to automate a reclaimer used for material handling. A static range finder detects range data of the front part of the piles of material, and a height map is obtained from the proposed image processing algorithm. The height map is used to calculate the optimal job path as features for required information for material handling function. A dynamic range finder attached on the side of the arm of the reclaimer detects the change of the local properties of the material with the handling function, which is used for avoiding collision and detecting the ending point for changing direction. the developed vision systm was applied to a 1/20 simulator and the results of test show that it is appropriate to use for automating the material handling.

  • PDF