• Title/Summary/Keyword: recirculating flow

Search Result 172, Processing Time 0.025 seconds

Visualization of Turbulent Flow around a Sphere (구 주위 난류유동에 관한 가시화 연구)

  • Jang, Young-Il;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.401-402
    • /
    • 2006
  • The turbulent flow around a sphere was investigated using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5300, 11000 and PIV measurements in a circulating water channel. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. The mean velocity field measured using a PIV technique in x-y center plane demonstrates the detailed near-wake structure such as nearly symmetric recirculation region, two toroidal vortices, laminar separation, transition and turbulent eddies. The PIV measurements of turbulent wake in y-z planes show that a recirculating vortex pair dominates the near-wake region.

  • PDF

Numerical Analysis of Fully Developed Turbulent Recirculating Flow and Heat Transfer for The Periodic Variations of Cross Sectional Area (周期的으로 斷面이 變化하는 完全確立된 亂流再循環 流動과 亂流熱傳達의 數値分析)

  • 이병곤;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.138-149
    • /
    • 1986
  • A numerical method is developed for the solution of fully developed turbulent recirculating flow whose cross-sectional area varies periodically. This enalbes the flow field analysis to be confined to a single isolated module, without involvement with the entrance region problem. This method are applied to the analysis of the turbulent flow field and heat transfer in artificially roughened annulus with repeated square rib.

Numerical Simulation of Spray Behavior and Its Interaction with Air Flow in Oil Burner (오일 버너에 있어서 분무거동과 공기유동의 상호작용에 관한 수치해석)

  • 나가지마
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.320-330
    • /
    • 1999
  • A numerical study was performed to investigate spray behavior and its interaction with air flow in a flame holding region of an oil burner(0.1MW) using the KIVA3 code. The numerical results in shape of the recirculating flow and size of the recirculation zone under different conditions were compared to those experimental results. The numerical results in fuel droplet trajectory show that a droplet under 30${\mu}m$ can follow the air flow but a droplet over 50${\mu}m$ penetrates the recirculation zone due to large momentum and a droplet of 30-50${\mu}m$ can follow the recirculating flow or pene-trates the recirculation zone.

  • PDF

Numerical Investigation for Drag Prediction of an Axisymmetric Underwater Vehicle with Bluff Afterbody (기저부를 갖는 축대칭 수중운동체의 저항예측에 관한 수치적 연구)

  • Kim, Min-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.372-377
    • /
    • 2010
  • The objective of this study is to predict the drag of an axisymmetric underwater vehicle with bluff afterbody using CFD. FLUENT, commercial CFD code, is used to simulate high Reynolds number turbulent flows around the vehicle. The computed drag coefficients are compared to available experimental data at various Reynolds numbers. Four widely used two-equation turbulence models are investigated to evaluate their performance of predicting the anisotropic turbulence in a recirculating flow region, which is caused by flow separation arising from the base of the vehicle. The simulations with Realizable ${\kappa}-{\varepsilon}$ and ${\kappa}-{\omega}$ SST turbulence models predict the anisotropic turbulent flows comparatively well and the drag prediction results with those models show good agreements with the experimental data.

Performance Analysis of a Torque Converter with Three Dimensional Flow Simulation (3차원 유동해석을 통한 토크 컨버터의 성능분석)

  • Shin, S.S.;Ahn, H.H.;Lee, T.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.15-23
    • /
    • 1998
  • A three dimensional simulation of the fluid flow in an automotive torque converter was conducted adopting the mixing plane model implemented in the computational fluid dynamics program CFD-ACE. The present numerical results for performance characteristics showed a good agreement with the experimental results. In the flow of the torque converter, recirculating flow regimes were found mostly at the suction side of each element, which caused the performance decrease. The recirculating flow can be minimized by the optimization of the blade geometries.

  • PDF

Analysis for the Flow and Wall Shear Stress with the Diameter Ratios of an Abdominal Aortic Aneurysm in a Pulsatile Flow (맥동 유동에서 복부 대동맥류의 직경비에 따른 유동 및 벽면전단응력 해석)

  • 모정하
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.181-187
    • /
    • 2002
  • The objective of the present study was to two-dimensionally investigate the characteristics of flow and wall shear stress under pulsatile flow in the aneurysm which is a local dilatation of the blood vessel for pulsatile flow. The numerical simulation using the commercial software were carried out for the diameter ratios(ratio of maximum diameter of aneurysm to the diameter of blood vessel) ranging from 1.5 to 2.5 and Womersley number, 15.47. It was shown that a recirculating flow at the bulge was developed and disappeared for one Period and the strength of vortex increased with the diameter ratio Especially. at time of 3.19s. the very weak recirculating flow was developed at the left upper sites of the aneurysm. The maximum values of the wall shear stress increased in Proportion to the diameter ratio. However. the Position of a maximum wall shear stress was the distal end of the aneurysm(z = 35mm) regardless of the diameter ratios.

Effect of the separating streamline curvature on the axisymmetric backward-facing step flow (박리 유선의 곡률 변화가 축대칭 후향계단 흐름에 미치는 영향)

  • Kim, K.C.;Boo, J.S.;Yang, J.P.;Jung, J.Y.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1510-1520
    • /
    • 1996
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purpose of the present study is to investigate the effect of the separating streamline curvature on the reattachment length and to understand the structure of recirculating flows. Local mean and fluctuating velocity components were measured in the separating and reattaching axisymmetric region of turbulent boundary layer on the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. The study demonstrates that the reattachment length increases with increasing separating streamline curvature. It is also observed that the reverse flow velocity and turbulent kinetic energy increase with an increase in the separating streamline curvature. In addition, the behavior of maximum turbulent stresses show that the effect of separating streamline curvature is larger in the region of recirculating zone(X/H<2) than in the region of reattachment point.

THE OSEEN-TYPE EXPANSION OF NAVIER-STOKER FLOWS WITH AN APPLICATION TO SWIMMING VELOCITY

  • Kim, Sun-Chul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.337-346
    • /
    • 2001
  • A linearization owing to Oseen originally is performed to study the recirculating Navier-Stokes flows at high Reynolds numbers. The procedure is generalized to produce higher order asymptotic expansion for the flow velocity. We call this the Oseen-type expansion of the given flow. As a concrete example, the velocity of a steady Navier-Stockes flow due to a swimming flexible sheet in two-dimensional infinite strip domain is calculated by an asymptotic expansion technic with two-parameters, the Reynolds number R and the perturbation parameter $\varepsilon$ first and then R secondly. The asymptotic result is up to second order in $\varepsilon$.

  • PDF

Numerical Analysis on the Flow Distribution in Ondol Flue Channel (산고래 온돌연도내의 유동분포에 관한 수치해석)

  • Man Man-Ki;Lee Seung Woo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.4
    • /
    • pp.264-274
    • /
    • 1983
  • Two-dimensional jet flows into a couple of confined rectangular enclosures such as an Ondol flue channel and their flow distributions were analyzed by numerical graphics : rectangular space in one enclosure is vacated and the other has 8 rectangular small posts. Both enclosures have a protruded inlet nozzle and on outlet on its center line. Steady state incompressible laminar viscous flow was assumed. The primitive forms of Navier-Stokes equations and continuity equation in a cartesian coordinate system were solved numerically by the Marker and Cell method for Reynolds numbers of 5, 10, 20, 30 and 40. From the numerical graphics it was found that the flow regions in both enclosures were devided into tow parts ; one part was the jet flow localized in a narrow center region of the enclosure and the other part was the very slow recirculating flow occupying the rest of the flow region in the enclosures. However there were a little differences in the shapes of jet flow in both enclosures for Reynolds numbers of 5 and 10 and also in the shapes of recirculating flows in both enclosures for all Reynolds number. Also it was found that waving flow appeared right before the outlet at Reynolds number of 20 and more.

  • PDF

A Numerical Study on the Steady and Pulsatile Flow with Various Diameter Ratios of Abdominal Aortic Aneurysm (복부대동맥류의 직경비에 따른 정상유동 및 맥동유동에 관한 수치적 연구)

  • Moh, Jeong-Hah;Park, Sang-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.920-928
    • /
    • 2003
  • The objective of the present study was to investigate the characteristics of flow and wall shear stress under steady and pulsatile flow in the aneurysm. The numerical simulation using the software were carried out for the diameter ratios ranging from 1.5 to 3.0, Reynolds number ranging from 900 to 1800 and Womersley number, 15.47. For steady flow, it was shown that a recirculating vortex occupied the entire bulge with its core located closer to the distal end of the bulge and the strength of vortex increased with increase of the Reynolds number and diameter ratio. The position of a maximum wall shear stress was the distal end of the aneurysm regardless of the Reynolds number and diameter ratios. For the pulsatile flow, a recirculating flow at the bulge was developed and disappeared for one period and the strength of vortex increased with the diameter ratio. The maximum values of the wall shear stress increased in proportion to the diameter ratio. However, the position of a maximum wall shear stress was the distal end of the aneurysm regardless of the diameter ratios.