• Title/Summary/Keyword: recharge effect

Search Result 67, Processing Time 0.021 seconds

Effect of the climate change on groundwater recharging in Bangga watershed, Central Sulawesi, Indonesia

  • Sutapa, I Wayan
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • This study was conducted to determine the effect of the climate change to the level of groundwater recharging. This research was conducted on the watershed of Bangga by using the Soil Water Balance of MockWyn-UB model. Input data compose of evapotranspiration, monthly rainfall, watershed area, canopy interception, heavy rain factor and the influence of climate change factors (rainfall and temperature). The conclusion of this study indicates that there is a decreasing trend in annual groundwater recharge observed from 1995 to 2011. The amount of groundwater recharge varied linearly with monthly rainfall and between 3% to 25% of the rainfall. This result implies that rain contributed more than groundwater recharge to runoff and evaporation and the groundwater recharge and Bangga River discharge depends largely on the rainfall. In order to increase the groundwater recharge in the study area, reforestation programmes should be intensified.

The Effect of Precipitation Change to the Groundwater Recharge (강수량 변화가 지하수함양량에 미치는 영향)

  • Lee, Seung-Hyun;Bae, Sang-Keun
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • The objective of this research is to observe and to analyze how the precipitation change can affect urban area and coastal area to groundwater recharge. The variation in the precipitation data of the regional groundwater basin, which includes Busan Metropolitan City Suyeong Gu area, was to estimate the change in the groundwater recharge and to analyze the characteristic changes. Research result reflects that as the precipitation varied, there was some difference in the groundwater recharge. However, differences in the precipitation ratio and the groundwater recharge ratio were consistent. Variation in the precipitation had less impact on the groundwater recharge ratio, and the groundwater recharge ratio decreased as timeline increased. When the precipitation increased by 10 %, groundwater recharge changed by 2.23 %. Accordingly, when it decreased by 10 %, groundwater recharge changed by 2.20 %. When it increased by 20 %, groundwater recharge changed by 4.39 %, and when it decreased by 20 %, groundwater recharge changed by 4.36 %. Despite the dramatic changes in the precipitation, the changes in the groundwater recharge were minimal. From the research, we can observe that the precipitation change had a significant impact on the ratio, but it doesn't really affect the groundwater recharge. Therefore, in urban area, the changes in groundwater recharge don't conform to the changes in the precipitation, and the effect of direct runoff can increase the possible occurrence of urban flooding.

Preliminary Assessment of Groundwater Artificial Recharge Effect Using a Numerical Model at a Small Basin (수치모델을 이용한 소분지에서의 지하수 인공함양 효과 예비 평가)

  • Choi, Myoung-Rak;Cha, Jang-Hwan;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.269-278
    • /
    • 2020
  • In this study, the effects of groundwater artificial recharge through vertical wells in the upper small basin are preliminarily evaluated by using field injection test and a 3-D numerical model. The injection rate per well in a model is set to 20, 37.5, 60, and 75 ㎥/day based on the results of field injection test, groundwater levels, and hydraulic conductivities estimated from particle size analysis, and a numerical model using MODFLOW is conducted for 28 cases, which have diverse injection intervals, in order to estimated the changes of groundwater level and water balance after injection. Groundwater level after injection does not show a linear relationship with the injection rate per well, and the cumulative effect of artificial recharge decreases and the timing of maximum water level rise is shortened as the injection interval becomes longer. In four cases of continuous injection with total injection rate of 1,200 ㎥, it is revealed that the recharge effect is analyzed as 36.5~65.3% of the original injection rate. However, it will be more effective if the artificial recharge system combined with underground barrier is introduced for the longer pumping during a long and severe drought. Additionally, it will be possible to build a stable artificial recharge system by an establishment of efficient scenario from recharge to pumping as well as an optimization of recharge facilities.

Evaluation of Groundwater Recharge using a Distributed Water Balance Model (WetSpass-M model) for the Sapgyo-cheon Upstream Basin (분포형 물수지 모델(WetSpass-M)을 이용한 삽교천 상류 유역에서의 월별 지하수 함양량 산정)

  • An, Hyowon;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.47-64
    • /
    • 2021
  • In this study, the annual and monthly groundwater recharge for the Sapgyo-cheon upstream basin in Chungnam Province was evaluated by water balance analysis utilizing WetSpass-M model. The modeling input data such as topography, climate parameters, LAI (Leaf Area Index), land use, and soil characteristics were established using ArcGIS, QGIS, and Python programs. The results showed that the annual average groundwater recharge in 2001 - 2020 was 251 mm, while the monthly groundwater recharge significantly varied over time, fluctuating between 1 and 47 mm. The variation was high in summer, and relatively low in winter. Variation in groundwater recharge was the largest in July in which precipitation was heavily concentrated, and the variation was closely associated with several factors including the total amount of precipitation, the number of days of the precipitation, and the daily average precipitation. This suggests the extent of groundwater recharge is greatly influenced not only by quantity of precipitation but also the precipitation pattern. Since climate condition has a profound effect on the monthly groundwater recharge, evaluation of monthly groundwater recharge need to be carried out by considering both seasonal and regional variability for better groundwater usage and management. In addition, the mathematical tools for groundwater recharge analysis need to be improved for more accurate prediction of groundwater recharge.

Transient Groundwater Flow Modeling in Coastal Aquifer

  • Li Eun-Hee;Hyun Yun-Jung;Lee Kang-Kun;Park Byoung-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.293-297
    • /
    • 2006
  • Submarine groundwater discharge (SGD) and the interface between seawater and freshwater in an unconfined coastal aquifer was evaluated by numerical modeling. A two-dimensional vertical cross section of the aquifer was constructed. Coupled flow and salinity transport modeling were peformed by using a numerical code FEFLOW In this study, we investigated the changes in groundwater flow and salinity transport in coastal aquifer with hydraulic condition such as the magnitude of recharge flux, hydraulic conductivity. Especially, transient simulation considering tidal effect and seasonal change of recharge rate was simulated to compare the difference between quasi-steady state and transient state. Results show that SGD flux is in proportion to the recharge rate and hydraulic conductivity, and the interface between the seawater and the freshwater shows somewhat retreat toward the seaside as recharge flux increases. Considered tidal effect, SGD flux and flow directions are affected by continuous change of the sea level and the interface shows more dispersed pattern affected by velocity variation. The cases which represent variable daily recharge rate instead of annual average value also shows remarkably different result from the quasi-steady case, implying the importance of transient state simulation.

  • PDF

Use of Groundwater recharge as a Variable for Monthly Streamflow Prediction (월 유출량 예측 변수로서 지하수 함양량의 이용)

  • Lee, Dong-Ryul;Yun, Yong-Nam;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.3
    • /
    • pp.275-285
    • /
    • 2001
  • Since the majority of streamflow during dry periods is provided by groundwater storage, the streamflow depends on a basin moisture state recharged from rainfall during wet periods. This hydrologic characteristics dives good condition to predict long-term streamflow if the basin state like groundwater recharge is known in advance. The objective of this study is to examine groundwater recharge effect to monthly streamflow, and to attempt monthly streamflow prediction using estimated groundwater recharge. The ground water recharge is used as an independent variable with streamflow and precipitation to construct multiple regression models for the prediction. Correlation analysis was performed to assess the effect of groundwater carry-over to streamflow and to establish the associations among independent variables. The predicted streamflow shows that the multiple regression model involved groundwater recharge gives improved results comparing to the model only using streamflow and precipitation as independent variables. In addition, this paper shows that the prediction model with the effect of groundwater carry-over taken into account can be developed using only precipitation.

  • PDF

Estimating Groundwater Recharge using the Water-Table Fluctuation Method: Effect of Stream-aquifer Interactions (지하수위 변동법에 의한 함양량 산정: 하천-대수층 상호작용의 영향)

  • Koo, Min-Ho;Kim, Tae-Keun;Kim, Sung-Soo;Chung, Sung-Rae;Kang, In-Oak;Lee, Chan-Jin;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.65-76
    • /
    • 2013
  • The water-table fluctuation (WTF) method has been often used for estimating groundwater recharge by analysis of waterlevel measurements in observation wells. An important assumption inherent in the method is that the water level rise is solely caused by precipitation recharge. For the observation wells located near a stream, however, the water-level can be highly affected by the stream level fluctuations as well as precipitation recharge. Therefore, in applying the WTF method, there should be consideration regarding the effect of stream-aquifer interactions. Analysis of water-level hydrographs from the National Groundwater Monitoring Wells of Korea showed that they could be classified into three different types depending on their responses to either precipitation recharge or stream level fluctuations. A simple groundwater flow model was used to analyze the errors of the WTF method, which were associated with stream-aquifer interactions. Not surprisingly, the model showed that the WTF method could greatly overestimate recharge, when it was used for the observation wells of which the water-level was affected by streams. Therefore, in Korea, where most groundwater hydrographs are acquired from wells nearby a stream, more caution is demanded in applying the WTF method.

Comparison of Groundwater Recharge between HELP Model and SWAT Model (HELP 모형과 SWAT 모형의 지하수 함양량 비교)

  • Lee, Do-Hun;Kim, Nam-Won;Chung, Il-Moon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.383-391
    • /
    • 2010
  • The groundwater recharge was assessed by using both SWAT and HELP models in Bocheong-cheon watershed. The SWAT model is a comprehensive surface and subsurface model, but it lacks the physical basis for simulating a soil water percolation process. The HELP model which has a drawback in simulating subsurface lateral flow and groundwater flow component can simulate soil water percolation process by considering the unsaturated flow effect of soil layers. The SWAT model has been successfully applied for estimating groundwater recharge in a number of watersheds in Korea, while the application of HELP model has been very limited. The subsurface lateral flow parameter was proposed in order to consider the subsurface lateral flow effect in HELP model and the groundwater recharge was simulated by the modified exponential decay weighting function in HELP model. The simulation results indicate that the recharge of HELP model significantly depends on the values of lateral flow parameter. The recharge errors between SWAT and HELP are the smallest when the lateral flow parameter is about 0.6 and the recharge rates between two models are shown to be reasonably comparable for daily, monthly, and yearly time scales. The HELP model is useful for estimating groundwater recharge at watershed scale because the model structure and input parameters of HELP model are simpler than that of SWAT model. The accuracy of assessing the groundwater recharge might be improved by the concurrent application of SWAT model and HELP model.

Selecting Aquifer Artificial Recharge Methods Based on Characteristics of the Target Aquifer (주입대상 대수층의 특성을 고려한 인공함양 방법 선정 연구)

  • Lee, Yeoung-Dong;Shin, Dong-Min;Kim, Byeong-Jun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.483-494
    • /
    • 2019
  • This study aimed to determine the extent of artificial aquifer recharge and to evaluate appropriate recharge techniques based on field investigations and comparative analysis of each recharge method. Characteristics of the aquifer determine the target aquifer and the recharge method for artificial groundwater recharge. Electrical conductivity surveys, drilling, permeability tests, and grain-size analysis indicate that the hydraulic conductivity of weathered soil and weathered rock is higher than that of upper unconsolidated soil. Pumping tests indicate that the groundwater level was stable at a depth of 12 m until 9 hours of pumping, but after that it dropped again, indicating anisotropic aquifer characteristics. Three types of artificial recharge method were reviewed, including recharge wells, ditches, and ponds, and a combination of two methods is proposed: a recharge well system directly injecting into weathered soil and rock sections with good permeability, and an injection ditch that can increase the recharge effect by line-type injection in the upstream area. The extent of groundwater recharge by the selected methods will be evaluated through on-site tests and if their applicability is verified, they will contribute to securing water in areas of water shortage.

A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation (지하수위 시계열 예측 모델 기반 하천수위 영향 필터링 기법 개발 및 지하수 함양률 산정 연구)

  • Yoon, Heesung;Park, Eungyu;Kim, Gyoo-Bum;Ha, Kyoochul;Yoon, Pilsun;Lee, Seung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.74-82
    • /
    • 2015
  • A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river. Direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Using the time series models the effect of river stage on groundwater level data was filtered out by setting a constant value for river stage inputs. The filtered data were applied to the hybrid water table fluctuation method in order to estimate the groundwater recharge. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.