• Title/Summary/Keyword: receptor mediated endocytosis

Search Result 28, Processing Time 0.023 seconds

Activation of the M1 Muscarinic Acetylcholine Receptor Induces GluA2 Internalization in the Hippocampus (쥐 해마에서 M1 무스카린 아세틸콜린 수용체의 활성에 의한 GluA2 세포내이입 연구)

  • Ryu, Keun Oh;Seok, Heon
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1103-1109
    • /
    • 2015
  • Cholinergic innervation of the hippocampus is known to be correlated with learning and memory. The cholinergic agonist carbachol (CCh) modulate synaptic plasticity and produced long-term synaptic depression (LTD) in the hippocampus. However, the exact mechanisms by which the cholinergic system modifies synaptic functions in the hippocampus have yet to be determined. This study introduces an acetylcholine receptor-mediated LTD that requires internalization of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors on the postsynaptic surface and their intracellular mechanism in the hippocampus. In the present study, we showed that the application of the cholinergic agonist CCh reduced the surface expression of GluA2 on synapses and that this reduction was prevented by the M1 muscarinic acetylcholine receptor antagonist pirenzepine in primary hippocampal neurons. The interaction between GluA2 and the glutamate receptor-interacting protein 1 (GRIP1) was disrupted in a hippocampal slice from a rat upon CCh simulation. Under the same conditions, the binding of GluA2 to adaptin-α, a protein involved in clathrin-mediated endocytosis, was enhanced. The current data suggest that the activation of LTD, mediated by the acetylcholine receptor, requires the internalization of the GluA2 subunits of AMPA receptors and that this may be controlled by the disruption of GRIP1 in the PDZ ligand domain of GluA2. Therefore, we can hypothesize that one mechanism underlying the LTD mediated by the M1 mAChR is the internalization of the GluA2 AMPAR subunits from the plasma membrane in the hippocampal cholinergic system.

Receptor-Mediated Endocytosis of Hepatitis B Virus PreS1d Protein in EBV-Transformed B-Cell line

  • Park, Jung-Hyun;Cho, Eun-Wie;Lee, Dong-Gun;Park, Jung-Min;Lee, Yun-Jung;Choi, Eun-A;Kim, Kill-Lyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.844-850
    • /
    • 2000
  • The specific binding and internalization of viral particles is an essential step for the successful infection of viral pathogens. In the case of the hepatitis B virus (HBV), virions bind to the host cell via the preS domain of the viral surface antigen and are subsequently internalized by endocytosis. HBV-preS specific receptors are primarily expressed on hepatocytes, however, viral DNA and proteins have also been detected in extrahepatic sites, suggsting that celluar recepators for HBV may also exist on extrahepatic cells. Recently, an EBV-transformed B-cell line was identified onto which the preS region binds in a receptor-ligand specific manner. In this study, this specific interaction was further characterized, and the binding region within the preS protein was locaized. Also the internalization after host cell attachment was visualized and analyzed by fluorescence-labeled HBV-preS1 proteins using confocal microscopy. Energy depletion by sodium azide treatment effectively inhibited the internalization of the membrane-bound preS1 ligands, thereby indicating an energy-dependent receptor-mediated endocytotic pathway. Accordingly, the interaction of HBV-pres! with this specific B-cell line may serve as an effective model for an infection pathway in extrahepatic cells.

  • PDF

Inhibition of Langerhans cell function by UVB radiation

  • Okamoto, Hiroyuki;Mizuno, Kana;Horio, Takeshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.190-193
    • /
    • 2002
  • The functional disruption of Langerhans cells (LC) by UVB radiation is involved in antigen-specific immunosuppression of contact hypersensitivity. We tested whether UVB radiation inhibits the endocytotic activity of LC, which leads to impaired subsequent migration and maturation. Human monocyte-derived LC that took up lucifer yellow (L Y) or FITC-dextran (Fd) exclusively migrated in response to 6Ckine and matured. Exposing LC to 10-40 mJ/cm$^2$ of UVB radiation reduced their endocytotic activity in fluid phase pinocytosis (measured by uptake of LY) and in receptor-mediated endocytosis (measured by uptake of Fd). Membrane ruffling and CD32 expression were also suppressed by UVB radiation. UVB-irradiated, endocytosing LC had less movement towards 6Ckine, expressed less CD54 and CD86, and had less effective stimulatory activity in allo-MLR than nonirradiated, endocytosing LC. Endocytosis up-regulated TNF-$\alpha$ production by LC, but prior UVB radiation inhibited this enhancement. The finding that impaired endocytosis of LC by UVB radiation inhibits subsequent migration and maturation was also confirmed in murine epidermal cells obtained from unirradiated and 2OmJ/cm$^2$ of UVB-irradiated skin.

  • PDF

Effects of Individual Fatty Acids on Receptor-Mediated Binding, Internalization and Degradation of $[^{125}I]LDL$

  • Choue, Ryo-Won;Cho, Byung-Hee Simon
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The ability of Hep-G2 cells to process $[^{125}I]LDL$ under basal conditions was investigated. The receptor-binding and internalization of $[^{125}I]LDL$ increased with the time of incubation in a saturable manner. After 4 h of incubation, 31.4 ng of $[^{125}I]LDL$ was cell bound. The cells rapidly internalized $[^{125}I]LDL$ via specific, receptor-mediated endocytosis. The amount of internalized $[^{125}I]LDL$ reached a maximun of 96.7 ng at 2 h of incubation and remained constant for the next 2 h. The rate of degradation of internalized $[^{125}I]LDL$ proceeded in a linear manner over the entire 4 h of incubation after an initial lag period. The effects of individial fatty acids (C18:0. C18:1, C18:2. and C18:3), differing in their degree of unsaturation. on the receptor-binding, internalization and degradation of $[^{125}I]LDL$ were also investigated. Inclusion of 1.0 mM of each fatty acid into the culture medium significantly increased $[^{125}I]LDL$ metabolism in Hep-G2 cells. Among the fatty acids tested, stearic acid had the least effect on the receptor-binding activity. There were no significant differences among the unsaturated fatty acids in LDL-receptor binding. The effect of individual fatty acids on the $[^{125}I]LDL$ uptake was similar to that of the receptor-binding. showing a significantly lower effect with stearic acid. The amount of degraded material of internalized $[^{125}I]LDL$ was the lowest with stearic acid when it was compared with unsaturated fatty acids.

  • PDF

Receptor-mediated Transport of Vitellogenin during Oogenesis of a Polychaete, Pseudopotamilla occelata

  • Lee, Bong-Gyeong;Nam, Jung-Hyeon;Lee, Yang-Rim
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.341-344
    • /
    • 1997
  • Receptor-mediated endocytosis has been suggested for a stage-specific transport mechanism of vitellogenin into the oocytes of a sabellid poly chaete, Pseudopotamilla occelata. Membrane proteins of oocytes of three size classes, including small (30-70 $\mu\textrm{m}$ in diameter), intermediate (70-140 $\mu\textrm{m}$ in diameter) and large (180-200 $\mu\textrm{m}$ in diameter), showed a atage-specific variation. Coelomic fluid proteins (CP), ass$\mu\textrm{m}$ed to be vitellogenin, consists of several proteins, which showed quite a different pattern from that of yolk proteins. Incorporation of $^{125}I$-CP into the oocytes of the intermediate size class almost linearly increases with time, showing a contrast to the pattern of the large size class, in which the incorporation is low and approaches a plateau, suggesting the vitellogenin transports by a regulated process only in the intermediate size class. Vitellogenin receptor proteins were identified to be 60 kDa and 68 kDa only in the intermediate size class by a ligand blotting test.

  • PDF

Preparation of CdSe QDs-carbohydrate Conjugation and its Application for HepG2 Cells Labeling

  • Jiang, Mingxing;Chen, Yan;Kai, Guiqing;Wang, Ruijun;Cui, Huali;Hu, Meili
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.571-574
    • /
    • 2012
  • In present study, CdSe quantum dots (QDs) were prepared with a novel but simple, effective and exercisable method. Nine different types of carbohydrate molecules were used to modify CdSe QDs. D-mannose (Man)-coated quantum dots were prepared for labeling human hepatoma (HepG2) cells, because of the high expression of mannose receptor (MR) on HepG2 cells. The uptake characteristics of CdSe QDs-Man were investigated in HepG2 cells. The absorption rate result of MTT assay in 48 h suggested the extremely low cytotoxicity of CdSe QDs-Man. The presence of quantum dots was confirmed with fluorescence microscopy. These results were encouraging regarding the application of QDs molecules for early detection of HepG2 cells.

Update on Phosphorylation-Mediated Brassinosteroid Signaling Pathways (단백질 인산화에 의해 매개되는 브라시노스테로이드 신호전달 연구의 최근 상황)

  • Lee, Yew;Kim, Soo-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.428-436
    • /
    • 2012
  • Protein phosphorylation is a universal mechanism that regulates cellular activities. The brassinosteroid (BR) signal transduction pathway is a relay of phosphorylation and dephosphorylation cascades. It starts with the BR-induced activation of the membrane receptor kinase brassinosteroid insensitive 1 (BRI1), resulting in the dephosphorylation of transcription factors such as BZR1/BES2 and BZR2/BES1 followed by BR-induced gene expression. Brassinosteroid signal transduction research has progressed rapidly by identifying the phosphorylation/dephosphorylation site(s) of the BR-regulated kinase and phosphatase substrates with a simultaneous pursuit of mutant phenotypes. Autophosphorylation, transphosphorylation, and serine/threonine and tyrosine phosphorylation of the receptor protein kinases BRI1 and BRI1-associated kinase (BAK1) have increased the understanding of the regulatory role of those kinases during physiological and developmental processes in plants. The phosphorylation event initiated by BR is also found in the regulation of receptor-mediated endocytosis and the subsequent degradation of the receptor. However, the basic molecular links of the BR signal transduction pathway are not well understood regarding this phosphorylation/dephosphorylation event. This review summarizes the current state of BR signal transduction research to uncover the phosphorylation/dephosphorylation networks and suggests directions for future research on steroid signal transduction to gain a more comprehensive understanding of the process.

The Functions of Lipophorin in Insect Hemolymph (곤충혈림프에 존재하는 리포포린의 기능)

  • Jung, Eun-Suk;Joe, Jun-Ho;Yun, Hwa-Kyung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.287-289
    • /
    • 2006
  • 곤충 혈림프에서 존재하는 리포포린은 선택적으로 지질을 지질 사용및 저장기관으로 운반한다. 본 연구는 유충지방체, 성충난소 및 정소로 지질의 운반과 유충지방체 및 성충난소로 리포포린 자체가 흡수되는 과정을 조사하였다. 이들의 기능을 조사하기 위해 FITC-labeled 리포포린과 DiI-labeled 리포포린을 사용하였다. 유충지방체, 성충난소 및 정소를 DiI-labeled 리포포린과 배양한 결과 리포포린으로 부터 각 기관으로 지질을 운반함을 알 수 있었고, 또한 receptor-mediated endocytosis 억제제인 suramin, unlabeled 리포포린과 배양한 결과는 리포포린에서 각 기관으로 운반되는 지질의 양이 현저하게 감소함을 알 수 있었다. 또한, 유충지방체와 성충난소를 FITC-labeled 리포포린과 배양한 결과 위에서 언급한 지질 뿐만 아니라 리포포린 자체도 각 기관의 에너지원으로 사용하기 위해 흡수된다는 사실을 알 수 있었으며, suramin과 unlabeled 리포포린과 배양한 결과 리포포린 자체가 흡수되는 양이 현저하게 감소함을 알 수 있었다. 위 실험결과로부터 리포포린에 의한 지질의 운반과정과 리포포린 자체의 흡수과정이 receptor-mediated endocytosis로 이루어짐을 알 수 있었다.

  • PDF

Biochemical Analysis of Anagrapha falcifera NPV Attachment to Spodoptera frugiperda 21 Cells

  • PARK, JIN O;JAI MYUNG YANG;IN SIK CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.361-364
    • /
    • 1999
  • The binding characteristics of Anagrapha falcifera nuclear polyhedrosis virus (AtNPV) to Spodoptera frugiperda 21 (Sf21) cells were investigated. The cells displayed an affinity of 4.7×10/sup 10/M/sup -1/ with about 3,300 binding sites per cell. The biochemical nature of the AfNPV-binding sites on the cell surface was also partially identified. Our findings suggest that the binding-site moiety has a glycoprotein component, but that the direct involvement of oligosacccharides containing N-acetylglucosamine or sialic acid residues in binding is unlikely, and that AfNPV entry into Sf21 cells may be via receptor-mediated endocytosis.

  • PDF

Dermal Absorption and Body Distribution of $^{125}I-rhEGF$ in Hairless Mice (헤어리스마우스 피부 국소에 적용된 $^{125}I-rhEGF$의 피부흡수 및 체내 분포)

  • Lee, Jeong-Uk;Chung, Seok-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.737-748
    • /
    • 1997
  • Distribution of rhEGF in the skin, plasma and several organ tissues following topical application of $^{125}I-rhEGF$ (0.4${\mu}$Ci) solution in 25% Pluronic F-127 on 154$mm^2$ normal and damaged (burned and stripped) skins of hairless mice was examined. The radioactivity in the stripped skin tissues increased as a function of time, and was 10-20 times higher than that in the normal and burned skins. The fractions of intact drug in the skin tissues were 40-60% for the normal and burned skins, and 60-80% for the stripped skin. It indicates that the stratum corneum layer behaves as a barrier for the dermal penetration of the drug. The radioactivity in the plasma was much higher for the stripped skin than for the normal and burned skins. However, the concentration of intact drug in the stripped skin was comparable to those in the normal and burned skins indicating most severe degradation (or metabolism) of the drug in the stripped skin. As a result, the fraction of intact drug in the plasma was lowest for the stripped skin (<10%). Body organ distribution of the drug was much higher for the stripped skin. The concentration in the stomach. Both in total radioactivity and intact drug, showed more than 10-times higher value than in the other organs (liver, kidney and spleen). The fraction of intact drug in each organ tissue was below 10-20%. And generally lowest for the stripped skin. The lowest fraction of the drug for the stripped skin could not be explained by the activity of the aminopeptidases in the skin since it was lower for the stripped skin than for the normal skin. Thereover, the fraction of intact drug appears to be determined by the balance between dermal uptake and systemic elimination of the drug, for example. The mechanism of dermal uptake of rhEGF was examined by topical applying 200${\mu}$l of 25% Pluronic F-127 solution containing 0.4 ${\mu}$Ci of $^{125}I-rhEGF$ and 0.14${\mu}$Ci of $^{14}C$-inulin (a marker of passive diffusion). The radioactivity of $^{125}I-rhEGF$ at each sampling time point (0.5, 1, 2, 4 and 8hr) was correlated (p<0.05) with the corresponding radioactivity of $^{14}C$-inulin. It appears to indicate the rhEGF may be uptaken into the skins mainly by the passive diffusion. This hypothesis was supported by the constant specific binding of EGF to the skin homogenates regardless of the skin models. Receptor mediated endocytosis (RME) appears to contribute negligibly, if any, to the overall uptake process.

  • PDF