• 제목/요약/키워드: receptor for activation of nuclear factor-${\kappa}B$ ligand

검색결과 34건 처리시간 0.023초

Sulforaphane Inhibits Osteoclastogenesis by Inhibiting Nuclear Factor-κB

  • Kim, Soo-Jin;Kang, So-Young;Shin, Hyun-Hee;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.364-370
    • /
    • 2005
  • We show that sulforaphane inhibits osteoclastogenesis in the presence of macrophage colony-stimulating factor (M-CSF) and receptor for activation of nuclear factor-${\kappa}B$ ligand (RANKL) in osteoclast (OC) precursors. Sulforaphane, an aliphatic isothiocyanate, is a known cancer chemo-preventative agent with anti-oxidative properties. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$) is a critical transcription factor in RANKL-induced osteoclastogenesis, and electrophoretic mobility shift assays (EMSAs) and assay of NF-${\kappa}B$-mediated secreted alkaline phosphatase (SEAP) revealed that sulforaphane selectively inhibited NF-${\kappa}B$ activation induced by RANKL. Inhibition may involve interaction of sulforaphane with thiol groups, since it was prevented by reducing agents.

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee;Lee, Na Kyung;Lee, Soo Young
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.706-713
    • /
    • 2017
  • Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation

  • Lee, Na Kyung
    • 대한의생명과학회지
    • /
    • 제23권4호
    • /
    • pp.295-302
    • /
    • 2017
  • Mononuclear osteoclast precursors derived from hematopoietic progenitors fuse together and then become multinucleated mature osteoclasts by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL). Especially, the binding of RANKL to its receptor RANK provides key signals for osteoclast differentiation and bone-resorbing function. RANK transduces intracellular signals by recruiting adaptor molecules such as TNFR-associated factors (TRAFs), which then activate mitogen activated protein kinases (MAPKs), Src/PI3K/Akt pathway, nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and finally amplify NFATc1 activation for the transcription and activation of osteoclast marker genes. This review will briefly describe RANKL-RANK signaling pathways and key molecules critical for osteoclast differentiation.

Inhibition of Homodimerization of Toll-like Receptor 4 by 6-Shogaol

  • Ahn, Sang-Il;Lee, Jun-Kyung;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.211-215
    • /
    • 2009
  • Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B ($NF-{\kappa}B$). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of $NF-{\kappa}B$ activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.

Inhibitory effects of Oxya chinensis sinuosa ethanol extract on RANKL-induced osteoclast differentiation

  • Ra-Yeong Choi;Bong Sun Kim;Sohyun Park;Minchul Seo;Joon Ha Lee;HaeYong Kweon;In-Woo Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제48권1호
    • /
    • pp.13-18
    • /
    • 2024
  • The rice field grasshopper, Oxya chinensis sinuosa (OC), has traditionally been utilized in Korea for various purposes; however, its potential benefits in the context of osteoporosis remain unclear. The results revealed that OC ethanol extract (OCE) significantly inhibited the formation and activity of tartrate-resistant acid phosphatase (TRAP)-positive cells in receptor activator of nuclear factor-κB ligand (RANKL)-stimulated RAW264.7 cells. Furthermore, OCE, at concentrations ranging from 100 to 400 ㎍/mL, demonstrated a dose-dependent reduction in the protein expression of osteoclast-specific markers, including nuclear factor of activated T cell cytoplasmic 1, c-Src, and TRAP, when compared to RANKL stimulation alone. Additionally, OCE significantly inhibited RANKL-induced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not the activation of extracellular signal-regulated kinase. Collectively, these results indicate that OCE suppresses osteoclastogenesis by attenuating the phosphorylation of p38 MAPK and JNK. Consequently, these findings suggest that OCE holds promise for the prevention of osteoporosis.

NFATc1 and NFATc3 is Involved in the Expression of Receptor Activator of NF-${\kappa}B$ Ligand in Activated T Lymphocytes

  • Heo, Sun-Jae;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제38권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Receptor activator of NF-${\kappa}B$ ligand (RANKL) is an essential cytokine for osteoclast differentiation, activation and survival. T lymphocytes such as $T_{17}$ cells, a subset of T helper cells that produce IL-17, play an important role in rheumatoid arthritic bone resorption by producing inflammatory cytokines and RANKL. It has not yet been clearly elucidated how T cell activation induces RANKL expression. T cell receptor activation induces the activation of nuclear factor of activated T cell (NFAT) and expression of its target genes. In this study, we examined the role of NFAT in T cell activation-induced RANKL expression. EL-4, a murine T lymphocytic cell line, was used. When T cell activation was induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin, RANKL expression increased in a time-dependent manner. In the presence of cyclosporin, an inhibitor of NFAT activation, this PMA/ionomycin-induced RANKL expression was blocked. Overexpression of either NFATc1 or NFATc3 induced RANKL expression. Chromatin immunoprecipitation results demonstrated that PMA/ionomycin treatment induced the binding of NFATc1 and NFATc3 to the mouse RANKL gene promoter. These results suggest that NFATc1 and NFATc3 mediates T cell receptor activation-induced RANKL expression in T lymphocytes.

Tusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • 제50권9호
    • /
    • pp.454-459
    • /
    • 2017
  • Tumor suppressor candidate 2 (Tusc2, also known as Fus1) regulates calcium signaling, and $Ca^{2+}$-dependent nuclear factor of activated T-cells (NFAT) and nuclear factor kappa B ($NF-{\kappa}B$) pathways, which play roles in osteoclast differentiation. However, the role of Tusc2 in osteoclasts remains unknown. Here, we report that Tusc2 positively regulates the differentiation of osteoclasts. Overexpression of Tusc2 in osteoclast precursor cells enhanced receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. In contrast, small interfering RNA-mediated knockdown of Tusc2 strongly inhibited osteoclast differentiation. In addition, Tusc2 induced the activation of RANKL-mediated $NF-{\kappa}B$ and calcium/calmodulin-dependent kinase IV (CaMKIV)/cAMP-response element (CRE)-binding protein CREB signaling cascades. Taken together, these results suggest that Tusc2 acts as a positive regulator of RANKL-mediated osteoclast differentiation.

Short Heterodimer Partner as a Regulator in OxLDL-induced Signaling Pathway

  • Kimpak, Young-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2001년도 Proceedings of International Convention of the Pharmaceutical Society of Korea
    • /
    • pp.109-113
    • /
    • 2001
  • Oxidized low-density lipoprotein (oxLDL) has been shown to modulate transactivations by the peroxisome proliferator activated receptor (PPAR)$\gamma$ and nuclear factor-kappa B (NF$\kappa$B). In this study, the oxLDL signaling pathways involved with the NF$\kappa$B transactivation were investigated by utilizing a reporter construct driven by three upstream NF$\kappa$B binding sites, and various pharmacological inhibitors. OxLDL and its constituent lysophophatidylcholine (lysoPC) induced a rapid and transient increase of intracellular calcium and stimulated the NF-KB transactivation in resting RAW264.7 macrophage cells in an oxidation-dependent manner. The NF$\kappa$B activation by oxLDL or lysoPC was inhibited by protein kinase C inhibitors or an intracellular calcium chelator. Tyrosine kinase or PI3 kinase inhibitors did not block the NF$\kappa$B transactivation. Furthermore, the oxLDL-induced NF$\kappa$B activity was abolished by the PPAR$\gamma$ ligands. When the endocytosis of oxLDL was blocked by cytochalasin B, the NF$\kappa$B transactivation by oxLDL was synergistically increased, while PPAR transactivation was blocked. These results suggest that oxLDL activates NF-$\kappa$B in resting macrophages via protein kinase C- and/or calcium-dependent pathways, which does not involve the endocytic processing of oxLDL. The endocytosis-dependent PPAR$\gamma$ activation by oxLDL may function as an inactivation route of the oxLDL induced NF$\kappa$B signal. Short heterodimer partner (SHP), specifically expressed in liver and a limited number of other tissues, is an unusual orphan nuclear receptor that lacks the conventional DNA-binding domain. In this work, we found that SHP expression is abundant in murine macrophage cell line RAW 264.7 but suppressed by oxLDL and its constituent I3-HODE, a ligand for peroxisome proliferator-activated receptor y. Furthermore, SHP acted as a transcription coactivator of nuclear factor-$\kappa$B (NF$\kappa$B) and was essential for the previously described NF$\kappa$B transactivation by lysoPC, one of the oxLDL constituents. Accordingly, NF$\kappa$B, transcriptionally active in the beginning, became progressively inert in oxLDL-treated RAW 264.7 cells, as oxLDL decreased the SHP expression. Thus, SHP appears to be an important modulatory component to regulate the transcriptional activities of NF$\kappa$B in oxLDL-treated, resting macrophage cells.

  • PDF

기계적 자극이 치주인대 세포의 osteoprotegerin과 receptor activator of nuclear factor ${\kappa}B$ ligand mRNA 발현에 미치는 영향 (The effect of progressive tensional force on mRNA expression of osteoprotegerin and receptor activator of nuclear factor ${\kappa}B$ ligand in the human periodontal ligament cell)

  • 이기주;이승일;황충주;옥승호;전옥순
    • 대한치과교정학회지
    • /
    • 제35권4호
    • /
    • pp.262-274
    • /
    • 2005
  • 본 연구는 치주인대 세포에 지속적이고 점진적 인장력을 가하여 치아 이동 시 형성되는 인장부위의 기계적 자극에 대한 생화학적 전달과 치조골 흡수와 생성 조절 기전을 이해하고자 하였다 치주인대 세포가 배양된 유연한 성장 표면을 가진 배지에 지속적이고 점진적인 인장력을 가하고 골흡수 인자인 $PGE_2$와 골형성 인자인 ALP의 생성량을 1 3 5. 12시간 후에 측정하여 정량비교하였고 파골세포 분화기전을 조절하는 OPG RANKL의 인자들과 matrix metalloproteinase(MMP)-1, -8, -9, -13, tissue inhibitor of matrix metalloproteinase(TIMP)-1의 인자들을 역전사 중합효소 연쇄반응 검사하여 m-RNA 발현을 비교한 결과 치주인대 세포에 인장력을 가한 경우 대조 군보다 $PGE_2$의 농도가 적었고 (p<0.05) ALP의 농도 변화는 없었으며 OPG의 mRNA 발현이 증가하였으나, RANKL의 mRNA 발현은 감소하였다 그리고 TIMP-1과 MMP-1 -8 -9, -13의 mRNA 발현이 대조군과 차이가 없었다. 이상의 연구에서 사람의 치주인대 세포는 점진적이고 지속적인 인장력에 대한 반응으로 $PGE_2$의 생성과 RANKL의 mRNA 발현은 감소하고 OPG의 mRNA 발현은 증가하여 골흡수를 억제하는 효과를 보이는 것으로 나타났다.

LPS로 유도한 복강대식세포에서 $I{\kappa}B-{\alpha}$ 분해억제에 의한 시경반하탕(柴梗半夏湯)의 항염증효과 (Shigyungbanha-tang Exhibits Anti-inflammatory Effects by Inhibiting $I{\kappa}B-{\alpha}$ Degradation in LPS-stimulated Peritoneal Macrophages)

  • 신조영;이시형;이승언
    • 대한한방내과학회지
    • /
    • 제28권3호
    • /
    • pp.442-452
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the toll-like receptor (TLR)-4 mediated anti-inflammatory effects of extract from Shigyungbanha-tang (SBT) on the peritoneal macrophage. Methods : To evaluate of TLR-4 mediated inflammatory of SBT. we examined NO and cytokine production in TRL-4 ligand (LPS : lipopolysaccharide) induced macrophages. Furthermore, we examined its molecular mechanism using western blot. Results : Extract from SBT itself does not have any cytotoxic effect in the peritoneal macrophages. Extract from SBT reduced LPS-induced nitric oxide (NO). tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin (IL)-6 and IL-12 production in peritoneal macrophages. SBT inhibited degradation of inhibitor kappa B-alpha ($I{\kappa}B-{\alpha}$) in the TLR-4 mediated peritoneal macrophages. Conclusions : These results suggest that SBT inhibits NO and cytokines production through inhibiting nuclear factor-kappaB (NF-${\kappa}$B) activation in peritoneal macrophage and that SBT may be beneficial oriental medicine for inflammation.

  • PDF