Acknowledgement
Supported by : Korea Research Foundation
References
- Afzal, M., Al-Hadidi, D., Menon, M., Pesek, J., and Dhami, M.S. (2001). Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol. Drug Interact. 18, 159-190
- Chang, C.P., Chang, J.Y., Wang, F.Y., and Chang, J.G. (1995). The effect of Chinese medicinal herb Zingiberis rhizoma extract on cytokine secretion by human peripheral blood mononuclear cells. J. Ethnopharmacol. 48, 13-19 https://doi.org/10.1016/0378-8741(95)01275-I
- Doyle, S.L., and O'Neill, L.A. (2006). Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72, 1102-1113 https://doi.org/10.1016/j.bcp.2006.07.010
- Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., and Maniatis, T. (2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491-496 https://doi.org/10.1038/ni921
- Hajjar, A.M., O'Mahony, D.S., Ozinsky, A., Underhill, D.M., Aderem, A., Klebanoff, S.J., and Wilson, C.B. (2001). Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 15-19 https://doi.org/10.4049/jimmunol.166.1.15
- Ippoushi, K., Azuma, K., Ito, H., Horie, H., and Higashio, H. (2003). [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci. 73, 3427-3437 https://doi.org/10.1016/j.lfs.2003.06.022
- Kim, S.O., Kundu, J.K., Shin, Y.K., Park, J.H., Cho, M.H., Kim, T.Y., and Surh, Y.J. (2005). [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol ester-stimulated mouse skin. Oncogene 24, 2558-2567 https://doi.org/10.1038/sj.onc.1208446
- Kim, J.J., Ahn, S.I., Lee, J.S., Yun, S.M., Lee, M., and Youn, H.S. (2008). Suppression of the expression of cyclooxygenase-2 induced by Toll-like receptor 2, 3, and 4 agonists by 6-shogaol. Korean J. Food SCI Technol. 40, 332-336
- Medzhitov, R., Preston-Hurlburt, P., and Janeway, C.A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397 https://doi.org/10.1038/41131
- Pan, M.H., Hsieh, M.C., Hsu, P.C., Ho, S.Y., Lai, C.S., Wu, H., Sang, S., and Ho, C.T. (2008). 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol. Nutr. Food Res. 52, 1-11
- Rhode, J., Fogoros, S., Zick, S., Wahl, H., Griffith, K.A., Huang, J., and Liu, J.R. (2007). Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement Altern Med. 7, 44 https://doi.org/10.1186/1472-6882-7-44
- Sato, S., Sugiyama, M., Yamamoto, M., Watanabe, Y., Kawai, T., Takeda, K., and Akira, S. (2003). Toll/IL-1 receptor domaincontaining adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304-4310 https://doi.org/10.4049/jimmunol.171.8.4304
- Saitoh, S., Akashi, S., Yamada, T., Tanimura, N., Kobayashi, M., Konno, K., Matsumoto, F., Fukase, K., Kusumoto, S., Nagai, Y., et al. (2004). Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligandinduced TLR4 oligomerization. Int. Immunol. 16, 961-969 https://doi.org/10.1093/intimm/dxh097
- Surh, Y.J. (2002). Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol. 40, 1091-1097 https://doi.org/10.1016/S0278-6915(02)00037-6
- Takada, Y., Murakami, A., and Aggarwal, B.B. (2005). Zerumbone abolishes NF-kappaB and IkappaBalpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene 24, 6957-6969 https://doi.org/10.1038/sj.onc.1208845
- Takeda, K., and Akira, S. (2005). Toll-like receptors in innate immunity. Int. Immunol. 17, 1-14
- Takeuchi, O., Kawai, T., Muhlradt, P.F., Morr, M., Radolf, J.D., Zychlinsky, A., Takeda, K., and Akira, S. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933-940 https://doi.org/10.1093/intimm/13.7.933
- Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R.L., and Akira, S. (2002). Cutting edge: role of Tolllike receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10-14 https://doi.org/10.4049/jimmunol.169.1.10
- Tao, X., Xu, Y., Zheng, Y., Beg, A.A., and Tong, L. (2002). An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem. Biophys. Res. Commun. 299, 216-221 https://doi.org/10.1016/S0006-291X(02)02581-0
- Thomson, M., Al-Qattan, K.K., Al-Sawan, S.M., Alnaqeeb, M.A., Khan, I., and Ali, M. (2002). The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins Leukot Essent Fatty Acids 67, 475-478 https://doi.org/10.1054/plef.2002.0441
- Toshchakov, V., Jones, B.W., Perera, P.Y., Thomas, K., Cody, M.J., Zhang, S., Williams, B.R., Major, J., Hamilton, T.A., Fenton, M.J., et al. (2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol. 3, 392-398 https://doi.org/10.1038/ni774
- Youn, H.S., Lee, J.Y., Fitzgerald, K.A., Young, H.A., Akira, S., and Hwang, D.H. (2005). Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J. Immunol. 175, 3339-3346 https://doi.org/10.4049/jimmunol.175.5.3339
- Youn, H.S., Lee, J.Y., Saitoh, S.I., Miyake, K., Kang, K.W., Choi, Y.J., and Hwang, D.H. (2006a). Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)- epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem. Pharmacol. 72, 850-859 https://doi.org/10.1016/j.bcp.2006.06.021
- Youn, H.S., Saitoh, S.I., Miyake, K., and Hwang, D.H. (2006b). Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem. Pharmacol. 72, 62-69 https://doi.org/10.1016/j.bcp.2006.03.022
- Youn, H.S., Lee, J.Y., Saitoh, S.I., Miyake, K., and Hwang, D.H. (2006c). Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem. Biophys. Res. Commun. 350, 866-871 https://doi.org/10.1016/j.bbrc.2006.09.097
- Youn, H.S., Lim, H.J., Choi, Y.J., Lee, J.Y., Lee, M.Y., and Ryu, J.H. (2008a). Selenium suppresses the activation of transcription factor NF-kappa B and IRF3 induced by TLR3 or TLR4 agonists. Int. Immunopharmacol. 8, 495-501 https://doi.org/10.1016/j.intimp.2007.12.008
- Youn, H.S., Lee, J.K., Choi, Y.J., Saitoh, S.I., Miyake, K., Hwang, D.H., and Lee, J.Y. (2008b). Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem. Pharmacol. 75, 494-502 https://doi.org/10.1016/j.bcp.2007.08.033
Cited by
- Costunolide inhibits cyclooxygenase-2 expression induced by toll-like receptor 3 or 4 agonist vol.1, pp.2, 2009, https://doi.org/10.1007/bf03216473
- Suppression of the TRIF-dependent signaling pathway of toll-like receptors by isoliquiritigenin in RAW264.7 macrophages vol.28, pp.4, 2009, https://doi.org/10.1007/s10059-009-0130-z
- Suppression of the TRIF-dependent signaling pathway of toll-like receptors by 4-oxo-4-(2-oxo-oxazolidin-3-yl)-but-2-enoic acid ethyl ester vol.2, pp.3, 2009, https://doi.org/10.1007/bf03216499
- Novel synthetic gluco‐disaccharide RSCL‐0409 – a lipopolysaccharide‐induced Toll‐like receptor‐mediated signalling antagonist vol.277, pp.7, 2010, https://doi.org/10.1111/j.1742-4658.2010.07589.x
- Molecular targets of [6]-gingerol: Its potential roles in cancer chemoprevention vol.36, pp.3, 2010, https://doi.org/10.1002/biof.78
- TBK1-Targeted Suppression of TRIF-Dependent Signaling Pathway of Toll-like Receptor 3 by Auranofin vol.33, pp.6, 2009, https://doi.org/10.1007/s12272-010-0618-2
- Parthenolide inhibits TRIF-dependent signaling pathway of toll-like receptors in RAW264.7 macrophages vol.31, pp.3, 2009, https://doi.org/10.1007/s10059-011-0032-8
- Suppression of cyclooxygenase-2 expression induced by Toll-like receptor 2 or 4 agonists by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate vol.7, pp.1, 2009, https://doi.org/10.1007/s13273-011-0006-0
- Update on the Chemopreventive Effects of Ginger and its Phytochemicals vol.51, pp.6, 2009, https://doi.org/10.1080/10408391003698669
- Inhibition of homodimerization of Toll-like receptor 4 by 4-oxo-4-(2-oxo-oxazolidin-3-yl)-but-2-enoic acid ethyl ester vol.11, pp.1, 2009, https://doi.org/10.1016/j.intimp.2010.09.020
- Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate vol.44, pp.7, 2009, https://doi.org/10.5483/bmbrep.2011.44.7.468
- Suppression of TRIF-dependent signaling pathway of toll-like receptors by allyl isothiocyanate in RAW 264.7 macrophages vol.13, pp.4, 2009, https://doi.org/10.1016/j.intimp.2012.05.017
- Triptolide inhibits inducible nitric oxide synthase expression induced by toll-like receptor agonists vol.5, pp.1, 2009, https://doi.org/10.1007/s13530-013-0150-0
- Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury vol.10, pp.None, 2009, https://doi.org/10.1186/1742-2094-10-27
- Eupatorium japonicum Extract Regulates Inflammation through Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptors vol.23, pp.2, 2014, https://doi.org/10.1007/s10068-014-0080-x
- Antitumor Activity of Gemcitabine Can Be Potentiated in Pancreatic Cancer through Modulation of TLR4/NF-κB signaling by 6-Shogaol vol.16, pp.2, 2009, https://doi.org/10.1208/s12248-013-9558-3
- Toll-like Receptor 4 (TLR4) Modulation by Synthetic and Natural Compounds: An Update vol.57, pp.9, 2014, https://doi.org/10.1021/jm401006s
- Zingerone Suppresses Liver Inflammation Induced by Antibiotic Mediated Endotoxemia through Down Regulating Hepatic mRNA Expression of Inflammatory Markers in Pseudomonas aeruginosa Peritonitis Mouse vol.9, pp.9, 2009, https://doi.org/10.1371/journal.pone.0106536
- TLR4 signalling in osteoarthritis-finding targets for candidate DMOADs vol.11, pp.3, 2009, https://doi.org/10.1038/nrrheum.2014.209
- Ginger-derived nanoparticles protect against alcohol-induced liver damage vol.4, pp.1, 2009, https://doi.org/10.3402/jev.v4.28713
- Gingerol protects against experimental liver fibrosis in rats via suppression of pro-inflammatory and profibrogenic mediators vol.389, pp.4, 2016, https://doi.org/10.1007/s00210-016-1210-1
- Occurrence, biological activity and metabolism of 6-shogaol vol.9, pp.3, 2009, https://doi.org/10.1039/c7fo01354j
- Comparative efficacy of vanilloids in inhibiting toll-like receptor-4 (TLR-4)/myeloid differentiation factor (MD-2) homodimerisation vol.9, pp.6, 2018, https://doi.org/10.1039/c8fo00136g
- Comparison of Inhibitory Capacities of 6-, 8- and 10-Gingerols/Shogaols on the Canonical NLRP3 Inflammasome-Mediated IL-1β Secretion vol.23, pp.2, 2018, https://doi.org/10.3390/molecules23020466
- The Cancer Prevention, Anti-Inflammatory and Anti-Oxidation of Bioactive Phytochemicals Targeting the TLR4 Signaling Pathway vol.19, pp.9, 2009, https://doi.org/10.3390/ijms19092729
- Cartilage and Bone Destruction in Arthritis: Pathogenesis and Treatment Strategy: A Literature Review vol.8, pp.8, 2009, https://doi.org/10.3390/cells8080818
- Gingers and Their Purified Components as Cancer Chemopreventative Agents vol.24, pp.16, 2009, https://doi.org/10.3390/molecules24162859
- Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells vol.42, pp.2, 2009, https://doi.org/10.1080/08923973.2020.1725040
- Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases vol.21, pp.14, 2009, https://doi.org/10.3390/ijms21144931
- Ultrasound-Augmented Phase Transition Nanobubbles for Targeted Treatment of Paclitaxel-Resistant Cancer vol.31, pp.8, 2009, https://doi.org/10.1021/acs.bioconjchem.0c00364
- Clinical trials on pain lowering effect of ginger: A narrative review vol.34, pp.11, 2009, https://doi.org/10.1002/ptr.6730
- Ginger ( Zingiber officinale ) Attenuates Obesity and Adipose Tissue Remodeling in High-Fat Diet-Fed C57BL/6 Mice vol.18, pp.2, 2009, https://doi.org/10.3390/ijerph18020631
- Ginger from Farmyard to Town: Nutritional and Pharmacological Applications vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.779352
- Benefits of Ginger and Its Constituent 6-Shogaol in Inhibiting Inflammatory Processes vol.14, pp.6, 2009, https://doi.org/10.3390/ph14060571