DOI QR코드

DOI QR Code

Inhibition of Homodimerization of Toll-like Receptor 4 by 6-Shogaol

  • Ahn, Sang-Il (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University) ;
  • Lee, Jun-Kyung (Cell Culture Process Research and Development Center, Celltrion Inc.) ;
  • Youn, Hyung-Sun (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
  • Received : 2008.10.30
  • Accepted : 2008.12.01
  • Published : 2009.02.28

Abstract

Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B ($NF-{\kappa}B$). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of $NF-{\kappa}B$ activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Afzal, M., Al-Hadidi, D., Menon, M., Pesek, J., and Dhami, M.S. (2001). Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol. Drug Interact. 18, 159-190
  2. Chang, C.P., Chang, J.Y., Wang, F.Y., and Chang, J.G. (1995). The effect of Chinese medicinal herb Zingiberis rhizoma extract on cytokine secretion by human peripheral blood mononuclear cells. J. Ethnopharmacol. 48, 13-19 https://doi.org/10.1016/0378-8741(95)01275-I
  3. Doyle, S.L., and O'Neill, L.A. (2006). Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72, 1102-1113 https://doi.org/10.1016/j.bcp.2006.07.010
  4. Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., and Maniatis, T. (2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491-496 https://doi.org/10.1038/ni921
  5. Hajjar, A.M., O'Mahony, D.S., Ozinsky, A., Underhill, D.M., Aderem, A., Klebanoff, S.J., and Wilson, C.B. (2001). Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 15-19 https://doi.org/10.4049/jimmunol.166.1.15
  6. Ippoushi, K., Azuma, K., Ito, H., Horie, H., and Higashio, H. (2003). [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci. 73, 3427-3437 https://doi.org/10.1016/j.lfs.2003.06.022
  7. Kim, S.O., Kundu, J.K., Shin, Y.K., Park, J.H., Cho, M.H., Kim, T.Y., and Surh, Y.J. (2005). [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol ester-stimulated mouse skin. Oncogene 24, 2558-2567 https://doi.org/10.1038/sj.onc.1208446
  8. Kim, J.J., Ahn, S.I., Lee, J.S., Yun, S.M., Lee, M., and Youn, H.S. (2008). Suppression of the expression of cyclooxygenase-2 induced by Toll-like receptor 2, 3, and 4 agonists by 6-shogaol. Korean J. Food SCI Technol. 40, 332-336
  9. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C.A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397 https://doi.org/10.1038/41131
  10. Pan, M.H., Hsieh, M.C., Hsu, P.C., Ho, S.Y., Lai, C.S., Wu, H., Sang, S., and Ho, C.T. (2008). 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol. Nutr. Food Res. 52, 1-11
  11. Rhode, J., Fogoros, S., Zick, S., Wahl, H., Griffith, K.A., Huang, J., and Liu, J.R. (2007). Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement Altern Med. 7, 44 https://doi.org/10.1186/1472-6882-7-44
  12. Sato, S., Sugiyama, M., Yamamoto, M., Watanabe, Y., Kawai, T., Takeda, K., and Akira, S. (2003). Toll/IL-1 receptor domaincontaining adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304-4310 https://doi.org/10.4049/jimmunol.171.8.4304
  13. Saitoh, S., Akashi, S., Yamada, T., Tanimura, N., Kobayashi, M., Konno, K., Matsumoto, F., Fukase, K., Kusumoto, S., Nagai, Y., et al. (2004). Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligandinduced TLR4 oligomerization. Int. Immunol. 16, 961-969 https://doi.org/10.1093/intimm/dxh097
  14. Surh, Y.J. (2002). Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol. 40, 1091-1097 https://doi.org/10.1016/S0278-6915(02)00037-6
  15. Takada, Y., Murakami, A., and Aggarwal, B.B. (2005). Zerumbone abolishes NF-kappaB and IkappaBalpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene 24, 6957-6969 https://doi.org/10.1038/sj.onc.1208845
  16. Takeda, K., and Akira, S. (2005). Toll-like receptors in innate immunity. Int. Immunol. 17, 1-14
  17. Takeuchi, O., Kawai, T., Muhlradt, P.F., Morr, M., Radolf, J.D., Zychlinsky, A., Takeda, K., and Akira, S. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933-940 https://doi.org/10.1093/intimm/13.7.933
  18. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R.L., and Akira, S. (2002). Cutting edge: role of Tolllike receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10-14 https://doi.org/10.4049/jimmunol.169.1.10
  19. Tao, X., Xu, Y., Zheng, Y., Beg, A.A., and Tong, L. (2002). An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem. Biophys. Res. Commun. 299, 216-221 https://doi.org/10.1016/S0006-291X(02)02581-0
  20. Thomson, M., Al-Qattan, K.K., Al-Sawan, S.M., Alnaqeeb, M.A., Khan, I., and Ali, M. (2002). The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins Leukot Essent Fatty Acids 67, 475-478 https://doi.org/10.1054/plef.2002.0441
  21. Toshchakov, V., Jones, B.W., Perera, P.Y., Thomas, K., Cody, M.J., Zhang, S., Williams, B.R., Major, J., Hamilton, T.A., Fenton, M.J., et al. (2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol. 3, 392-398 https://doi.org/10.1038/ni774
  22. Youn, H.S., Lee, J.Y., Fitzgerald, K.A., Young, H.A., Akira, S., and Hwang, D.H. (2005). Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J. Immunol. 175, 3339-3346 https://doi.org/10.4049/jimmunol.175.5.3339
  23. Youn, H.S., Lee, J.Y., Saitoh, S.I., Miyake, K., Kang, K.W., Choi, Y.J., and Hwang, D.H. (2006a). Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)- epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem. Pharmacol. 72, 850-859 https://doi.org/10.1016/j.bcp.2006.06.021
  24. Youn, H.S., Saitoh, S.I., Miyake, K., and Hwang, D.H. (2006b). Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem. Pharmacol. 72, 62-69 https://doi.org/10.1016/j.bcp.2006.03.022
  25. Youn, H.S., Lee, J.Y., Saitoh, S.I., Miyake, K., and Hwang, D.H. (2006c). Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem. Biophys. Res. Commun. 350, 866-871 https://doi.org/10.1016/j.bbrc.2006.09.097
  26. Youn, H.S., Lim, H.J., Choi, Y.J., Lee, J.Y., Lee, M.Y., and Ryu, J.H. (2008a). Selenium suppresses the activation of transcription factor NF-kappa B and IRF3 induced by TLR3 or TLR4 agonists. Int. Immunopharmacol. 8, 495-501 https://doi.org/10.1016/j.intimp.2007.12.008
  27. Youn, H.S., Lee, J.K., Choi, Y.J., Saitoh, S.I., Miyake, K., Hwang, D.H., and Lee, J.Y. (2008b). Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem. Pharmacol. 75, 494-502 https://doi.org/10.1016/j.bcp.2007.08.033

Cited by

  1. Costunolide inhibits cyclooxygenase-2 expression induced by toll-like receptor 3 or 4 agonist vol.1, pp.2, 2009, https://doi.org/10.1007/bf03216473
  2. Suppression of the TRIF-dependent signaling pathway of toll-like receptors by isoliquiritigenin in RAW264.7 macrophages vol.28, pp.4, 2009, https://doi.org/10.1007/s10059-009-0130-z
  3. Suppression of the TRIF-dependent signaling pathway of toll-like receptors by 4-oxo-4-(2-oxo-oxazolidin-3-yl)-but-2-enoic acid ethyl ester vol.2, pp.3, 2009, https://doi.org/10.1007/bf03216499
  4. Novel synthetic gluco‐disaccharide RSCL‐0409 – a lipopolysaccharide‐induced Toll‐like receptor‐mediated signalling antagonist vol.277, pp.7, 2010, https://doi.org/10.1111/j.1742-4658.2010.07589.x
  5. Molecular targets of [6]-gingerol: Its potential roles in cancer chemoprevention vol.36, pp.3, 2010, https://doi.org/10.1002/biof.78
  6. TBK1-Targeted Suppression of TRIF-Dependent Signaling Pathway of Toll-like Receptor 3 by Auranofin vol.33, pp.6, 2009, https://doi.org/10.1007/s12272-010-0618-2
  7. Parthenolide inhibits TRIF-dependent signaling pathway of toll-like receptors in RAW264.7 macrophages vol.31, pp.3, 2009, https://doi.org/10.1007/s10059-011-0032-8
  8. Suppression of cyclooxygenase-2 expression induced by Toll-like receptor 2 or 4 agonists by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate vol.7, pp.1, 2009, https://doi.org/10.1007/s13273-011-0006-0
  9. Update on the Chemopreventive Effects of Ginger and its Phytochemicals vol.51, pp.6, 2009, https://doi.org/10.1080/10408391003698669
  10. Inhibition of homodimerization of Toll-like receptor 4 by 4-oxo-4-(2-oxo-oxazolidin-3-yl)-but-2-enoic acid ethyl ester vol.11, pp.1, 2009, https://doi.org/10.1016/j.intimp.2010.09.020
  11. Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate vol.44, pp.7, 2009, https://doi.org/10.5483/bmbrep.2011.44.7.468
  12. Suppression of TRIF-dependent signaling pathway of toll-like receptors by allyl isothiocyanate in RAW 264.7 macrophages vol.13, pp.4, 2009, https://doi.org/10.1016/j.intimp.2012.05.017
  13. Triptolide inhibits inducible nitric oxide synthase expression induced by toll-like receptor agonists vol.5, pp.1, 2009, https://doi.org/10.1007/s13530-013-0150-0
  14. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury vol.10, pp.None, 2009, https://doi.org/10.1186/1742-2094-10-27
  15. Eupatorium japonicum Extract Regulates Inflammation through Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptors vol.23, pp.2, 2014, https://doi.org/10.1007/s10068-014-0080-x
  16. Antitumor Activity of Gemcitabine Can Be Potentiated in Pancreatic Cancer through Modulation of TLR4/NF-κB signaling by 6-Shogaol vol.16, pp.2, 2009, https://doi.org/10.1208/s12248-013-9558-3
  17. Toll-like Receptor 4 (TLR4) Modulation by Synthetic and Natural Compounds: An Update vol.57, pp.9, 2014, https://doi.org/10.1021/jm401006s
  18. Zingerone Suppresses Liver Inflammation Induced by Antibiotic Mediated Endotoxemia through Down Regulating Hepatic mRNA Expression of Inflammatory Markers in Pseudomonas aeruginosa Peritonitis Mouse vol.9, pp.9, 2009, https://doi.org/10.1371/journal.pone.0106536
  19. TLR4 signalling in osteoarthritis-finding targets for candidate DMOADs vol.11, pp.3, 2009, https://doi.org/10.1038/nrrheum.2014.209
  20. Ginger-derived nanoparticles protect against alcohol-induced liver damage vol.4, pp.1, 2009, https://doi.org/10.3402/jev.v4.28713
  21. Gingerol protects against experimental liver fibrosis in rats via suppression of pro-inflammatory and profibrogenic mediators vol.389, pp.4, 2016, https://doi.org/10.1007/s00210-016-1210-1
  22. Occurrence, biological activity and metabolism of 6-shogaol vol.9, pp.3, 2009, https://doi.org/10.1039/c7fo01354j
  23. Comparative efficacy of vanilloids in inhibiting toll-like receptor-4 (TLR-4)/myeloid differentiation factor (MD-2) homodimerisation vol.9, pp.6, 2018, https://doi.org/10.1039/c8fo00136g
  24. Comparison of Inhibitory Capacities of 6-, 8- and 10-Gingerols/Shogaols on the Canonical NLRP3 Inflammasome-Mediated IL-1β Secretion vol.23, pp.2, 2018, https://doi.org/10.3390/molecules23020466
  25. The Cancer Prevention, Anti-Inflammatory and Anti-Oxidation of Bioactive Phytochemicals Targeting the TLR4 Signaling Pathway vol.19, pp.9, 2009, https://doi.org/10.3390/ijms19092729
  26. Cartilage and Bone Destruction in Arthritis: Pathogenesis and Treatment Strategy: A Literature Review vol.8, pp.8, 2009, https://doi.org/10.3390/cells8080818
  27. Gingers and Their Purified Components as Cancer Chemopreventative Agents vol.24, pp.16, 2009, https://doi.org/10.3390/molecules24162859
  28. Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells vol.42, pp.2, 2009, https://doi.org/10.1080/08923973.2020.1725040
  29. Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases vol.21, pp.14, 2009, https://doi.org/10.3390/ijms21144931
  30. Ultrasound-Augmented Phase Transition Nanobubbles for Targeted Treatment of Paclitaxel-Resistant Cancer vol.31, pp.8, 2009, https://doi.org/10.1021/acs.bioconjchem.0c00364
  31. Clinical trials on pain lowering effect of ginger: A narrative review vol.34, pp.11, 2009, https://doi.org/10.1002/ptr.6730
  32. Ginger ( Zingiber officinale ) Attenuates Obesity and Adipose Tissue Remodeling in High-Fat Diet-Fed C57BL/6 Mice vol.18, pp.2, 2009, https://doi.org/10.3390/ijerph18020631
  33. Ginger from Farmyard to Town: Nutritional and Pharmacological Applications vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.779352
  34. Benefits of Ginger and Its Constituent 6-Shogaol in Inhibiting Inflammatory Processes vol.14, pp.6, 2009, https://doi.org/10.3390/ph14060571