• Title/Summary/Keyword: receivers

Search Result 1,188, Processing Time 0.03 seconds

Timing-offset compensation techniques in ATSC DTV receivers (지상파 DTV 수신기에서 타이밍 옵셋 보상 기법)

  • 김용철;김대진
    • Journal of Broadcast Engineering
    • /
    • v.8 no.2
    • /
    • pp.146-152
    • /
    • 2003
  • ATSC DTV receivers use repetitive data segment syncs or Gardner algorithm as a tuning recovery circuit. Many multipath signals can induce timing-offset in the symbol timing recovery circuit using Gardner algorithm and this timing-offset shifts sampling instant to the wrong points, causing the performance of the equalizer to become nr. When many echoes exist, the optimal sampling instant will be the Point at which the main-path has a peak value. In this paper, by using channel correlation techniques, we find the optimal sampling instant, thereby compensating the timing offset and improving DTV reception performance. We analyzed the Performance enhancement of DTV receivers using the timing offset compensator.

A recursive trellis decoder using feedback data in ATSC DTV receivers (ATSC DTV 수신기에서 피드백을 갖는 트렐리스 복호기)

  • Oh, Young-Ho;Lee, Kyoung-Won;Kim, Dae-Jin
    • Journal of Broadcast Engineering
    • /
    • v.12 no.6
    • /
    • pp.641-648
    • /
    • 2007
  • The decoding structure of up-to-date ATSC DTV receivers is well optimized, and it seems that 14.6 dB is the unbreakable minimum SNR in the AWGN channel. But the SNR satisfying the Shannon capacity of DTV receivers is 11.76 dB, So, the SNR gab between the 14.6 dB and the 11.76 dB is about 2.8 dB. In order to approach the Shannon capacity we propose a recursive trellis decoder which uses reliable feedback data obtained by an RS decoder. The performance enhancement of about 0.8 dB can be achieved in case of the AWGN channel.

A Study on Additional spurious emission for receivers in the Low Power Wireless Installations (소출력 무선기기의 부차적 전파발사에 관한 연구)

  • Kim, Sun-Youb;Ra, Yoo-Char
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.963-965
    • /
    • 2009
  • For the low power wireless installations, limited frequency resources are divided by use for their effective use and are assigned. Moreover, output strength is limited according to the frequency used in order to protect other wireless stations from interference caused by radio waves emitted from the low power wireless installations. For receivers, unwanted spurious emission is regulated, and regulations in Korea define that additional spurious emission for receivers in the low power wireless installations under 1GHz should be -54dBm, but no regulations have been established yet for low power wireless installations over 1GHz. It is presently required to set domestic standards for devices over 1GHz on account of the expansion of the communication market and its service.

  • PDF

Wireless links for global positioning system receivers

  • Casciati, Fabio;Wu, Lijun
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2012
  • Given an object, its positioning in the space is a main concern in structural monitoring and a required feedback in structural health monitoring, structural control and robotics. In addition, to make the sensor unit wireless is a crucial issue for advanced applications. This paper deals with the exploitation of wireless transmission technology to long-term monitoring GPS (Global Positioning System) receivers - like the Leica GMX 902 and the Leica GRX 1200-pro. These GPS receivers consist of five parts: antenna, receiver, user client computer, interface and power supply. The antenna is mounted on the object to be monitored and is connected with the receiver by a coaxial-cable through which the radio frequency signals are transmitted. The receiver unit acquires, tracks and demodulates the satellite signals and provides, through an interface which in this paper is made wireless, the resulting GPS raw data to the user client computer for being further processed by a suitable positioning algorithm. The power supply reaches the computer by a wired link, while the other modules rely on batteries re-charged by power harvesting devices. Two wireless transmission systems, the 24XStream and the CC1110, are applied to replace the cable transmission between the receiver and the user client computer which up to now was the only market offer. To verify the performance and the reliability of this wireless transmission system, some experiments are conducted. The results show a successful cable replacement.

CHARACTERIZATION OF GEOTECHNICAL SITES BY MULTI-CHANNEL ANALSIS OF SURFACE WAVES(MCASW) (지표층의 탄성계수 측정을 위한 새로운 탄성파 방법)

  • 박춘병
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.15.2-22
    • /
    • 1995
  • Evaluating stiffness of near-surface materials has been one of the critically important tasks in many civil engineering works. It is the main goal of geotechnical characterization. The so-called deflection-response method evaluates the stiffness by measuring stress-strain behavior of the materials caused by static or dynamic load. This method, however, evaluates the overall stiffness and the stiffness variation with depth cannot be obtained. Furthermore, evaluation of a large-area geotechnical site by this method can be time-consuming, expensive, and damaging to many surface points of the site. Wave-propagation method, on the other hand, measures seismic velocities at different depths and stiffness profile (stiffness change with depth) can be obtained from the measured velocity data. The stiffness profile is often expressed by shear-wave (S-wave) velocity change with depth because S-wave velocity is proportional to the shear modulus. that is a direct indicator of stiffiiess. The crosshole and downhole method measures the seismic velocity by placing sources and receivers (geophones) at different depths in a borehole. Requirement of borehole installation makes this method also time-consuming, expensive, and damaging to the sites. Spectral-Analysis-of-Surface-Waves (SASW) method places both source and receivers at the surface, and records horizontally-propagating surface waves. Based upon the theory of surfacewave dispersion, the seismic velocities at different depths are calculated by analyzing the recorded surface-wave data. This method can be nondestructive to the sites. However, because only two receivers are used, the method requires multiple measurements with different field setups and, therefore, the method often becomes time-consuming and labor-intensive. Furthermore. the inclusion of noise wavefields cannot be handled properly, and this may cause the results by this method inaccurate. When multi-channel recording method is employed during the measurement of surface-waves, there are several benefits. First, usually single measurement is enough because multiple number (twelve or more) of receivers are used. Second, noise inclusion can be detected by coherency checking on the multi-channel data and handled properly so that it does not decrease the accuracy of the result. Third, various kinds of multi-channel processing techniques can be applied to f1lter unwanted noise wavefields and also to analyze the surface-wavefields more accurately and efficiently. In this way, the accuracy of the result by the method can be significantly improved. Fourth, the entire system of source, receivers, and recording-processing device can be tied into one unit, and the unit can be pulled by a small vehicle, making the survey speed very fast. In all these senses, multi-channel recording of surface waves is best suited for a routine method for geotechnical characterization in most of civil engineering works.

  • PDF

Performance Improvement Scheme based on Proactive Transmission for Reliable Multicast in Wireless LANs (무선 랜에서 신뢰성 있는 멀티캐스트를 위한 능동적 전송 기반의 성능 향상 방법)

  • Kim, Sun-Myeng;Kim, Si-Gwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.16-24
    • /
    • 2011
  • The IEEE 802.11 wireless LAN (Local Area Network) is widely used for wireless access due to its easy deployment and low cost. Multicast in wireless LANs is very useful for transmitting data to multiple receivers compared to unicast to each receiver. In the IEEE 802.11 wireless LAN, multicast transmissions are unreliable since multicast data packets are transmitted without any feedback from receivers. Recently, various protocols have been proposed to enhance the reliability of multicast transmissions. They still have serious problems in reliability and efficiency due to the excessive control overhead by the use of a large number of control packets in the error recovery process, and due to a large number of retransmissions to satisfy all receivers. In this paper, we propose an effective scheme called PTRM(Proactive Transmission based Reliable Multicast). The proposed scheme uses a block erasure code to generate parity packets and to reduce the impact of independent packet error among receivers. After generating parity packets, the PTRM transmits data packets as many as receivers need to recover error, and then requests feedback from them. The simulation results show that the proposed scheme provides reliable multicast while minimizing the feedback overhead.

Low-Sampling Rate UWB Channel Characterization and Synchronization

  • Maravic, Irena;Kusuma, Julius;Vetterli, Martin
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.319-327
    • /
    • 2003
  • We consider the problem of low-sampling rate high-resolution channel estimation and timing for digital ultrawideband (UWB) receivers. We extend some of our recent results in sampling of certain classes of parametric non-bandlimited signals and develop a frequency domain method for channel estimation and synchronization in ultra-wideband systems, which uses sub-Nyquist uniform sampling and well-studied computational procedures. In particular, the proposed method can be used for identification of more realistic channel models, where different propagation paths undergo different frequency-selective fading. Moreover, we show that it is possible to obtain high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. Our approach leads to faster acquisition compared to current digital solutions, allows for slower A/D converters, and potentially reduces power consumption of digital UWB receivers significantly.

Fabrication of 40 Gb/s Front-End Optical Receivers Using Spot-Size Converter Integrated Waveguide Photodiodes

  • Kwon, Yong-Hwan;Choe, Joong-Seon;Kim, Je-Ha;Kim, Ki-Soo;Choi, Kwang-Seong;Choi, Byung-Seok;Yun, Ho-Gyeong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.484-490
    • /
    • 2005
  • We fabricated 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes (SSC-WGPDs). The fabricated SSC-WGPD chips showed a high responsivity of approximately 0.8 A/W and a 3 dB bandwidth of approximately 40 GHz. A selective wet-etching method was first adopted to realize the required width and depth of a tapered waveguide. Two types of electrical pre-amplifier chips were used in our study. One has higher gain and the other has a broader bandwidth. The 3 dB bandwidths of the higher gain and broader bandwidth modules were about 32 and 42 GHz, respectively. Clear 40 Gb/s non-return-to-zero (NRZ) eye diagrams showed good system applicability of these modules.

  • PDF