Designing Receivers for New GNSS Signals

A G Dempster

Slide 1

School of Surveying & Spatial Information Systems, UNSW ©

Phasing in of new Signals

L2: 2005L5: 2006?

• Galileo (prototype): 2005?

- Many years before full constellations of signals are available
- How to incorporate new signals when available?
 - Software radio
 - Reconfigurable designs

Slide 3

School of Surveying & Spatial Information Systems, UNSW ©

How Signals Might Combine

Band	E5 (L5)	L2	E6	L1
fmin	1164	1217	1260	1573
fmax	1214	1238	1300	1577
Ex. 1	X	X	X	X
Ex. 2	X	X		X
Ex. 3	X			X
Ex. 4		X		X

Slide 4

School of Surveying & Spatial Information Systems, UNSW ©

Antenna Design

- Requirement for narrowband at L1 plus one broad band around 1.2GHz
- Patch antennas:
 - Robust and cheap
 - No simple cheap solution exists for multiple bands (especially broad bands)
- Helical variants
 - · Bulky and not mechanically robust

Slide 6

School of Surveying & Spatial Information Systems, UNSW @

Bandpass Filter Design

• For Bandpass sampling:

SNR_s =
$$\frac{S}{N_p + (n-1)N_0}$$
 N_p in-band noise N_0 out-of-band noise

n subsampling ratio

· Max subsampling ratio for GNSS is for L1 GPS:

 $n_{\text{max}} = \left| \frac{f_{\text{max}}}{B} \right| = 1576/2 = 788$

• Requires N_p/N_0 of 29dB for 3dB SNR loss

Slide 7

School of Surveying & Spatial Information Systems, UNSW @

Bandpass Sampling

- Sampling rate must be at least twice the signal bandwidth (Nyquist)
- It must also, because a virtual downconversion results, ensure each downconverted band does not:
 - overlap dc,
 - overlap the Nyquist rate, or
 - overlap any other downconverted signal band

Slide 8

School of Surveying & Spatial Information Systems, UNSW @

Correlators

- L5 signals are QPSK but use direct sequence spreading
- Galileo signals are hexaphase and use binary-offset carrier (BOC) codes
- Therefore correlators will be more complicated, but this is not a huge step forward in complexity

Slide 9

School of Surveying & Spatial Information Systems, UNSW ©

Power Consumption

- Sampling rate and processing effort (and therefore power consumption) are proportional to bandwidth
- Almost all of the new signals are much higher bandwidth than GPS L1
- New GNSS receivers will consume much more power so low-power techniques will be more important for mobile applications

Slide 10

School of Surveying & Spatial Information Systems, UNSW ©

Conclusion: Challenges

- Software and reconfigurable techniques will be required for many years
- Wide-band antenna design
- High-Q RF front ends
- Careful selection of sampling rates
- Power consumption

Slide 11

School of Surveying & Spatial Information Systems, UNSW

