• Title/Summary/Keyword: realtime simulation

Search Result 169, Processing Time 0.024 seconds

A study of usefulness for the plan based on only MRI using ViewRay MRIdian system (ViewRay MRIdian System을 이용한 MRI only based plan의 유용성 고찰)

  • Jeon, Chang Woo;Lee, Ho Jin;An, Beom Seok;Kim, Chan young;Lee, Je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.131-143
    • /
    • 2015
  • Purpose : By comparing a CT fusion plan based on MRI with a plan based on only MRI without CT, we intended to study usefulness of a plan based on only MRI. And furthermore, we intended to realize a realtime MR-IGRT by MRI image without CT scan during the course of simulation, treatment planning, and radiation treatment. Materials and Methods : BBB CT (Brilliance Big Bore CT, 16slice, Philips), Viewray MRIdian system (Viewray, USA) were used for CT & MR simulation and Treatment plan of 11 patients (1 Head and Neck, 5 Breast, 1 Lung, 3 Liver, 1 Prostate). When scanning for treatment, Free Breathing was enacted for Head&Neck, Breast, Prostate and Inhalation Breathing Holding for Lung and Liver. Considering the difference of size between CT and Viewray, the patient's position and devices were in the same condition. Using Viewray MRIdian system, two treatment plans were established. The one was CT fusion treatment plan based on MR image. Another was MR treatment plan including electron density that [ICRU 46] recommend for Lung, Air and Bone. For Head&Neck, Breast and Prostate, IMRT was established and for Lung and Liver, Gating treatment plan was established. PTV's Homogeneity Index(HI) and Conformity Index(CI) were use to estimate the treatment plan. And DVH and dose difference of each PTV and OAR were compared to estimate the treatment plan. Results : Between the two treatment plan, each difference of PTV's HI value is 0.089% (Head&Neck), 0.26% (Breast), 0.67% (Lung), 0.2% (Liver), 0.4% (Prostate) and in case of CI, 0.043% (Head&Neck), 0.84% (Breast), 0.68% (Lung), 0.46% (Liver), 0.3% (Prostate). As showed above, it is on Head&Neck that HI and CI's difference value is smallest. Each difference of average dose on PTV is 0.07 Gy (Head&Neck), 0.29 Gy (Breast), 0.18 Gy (Lung), 0.3 Gy (Liver), 0.18 Gy (Prostate). And by percentage, it is 0.06% (Head&Neck), 0.7% (Breast), 0.29% (Lung), 0.69% (Liver), 0.44% (Prostate). Likewise, All is under 1%. In Head&Neck, average dose difference of each OAR is 0.01~0.12 Gy, 0.04~0.06 Gy in Breast, 0.01~0.21 Gy in Lung, 0.06~0.27 Gy in Liver and 0.02~0.23 Gy in Prostate. Conclusion : PTV's HI, CI dose difference on the Treatment plan using MR image is under 1% and OAR's dose difference is maximum 0.89 Gy as heterogeneous tissue increases when comparing with that fused CT image. Besides, It characterizes excellent contrast in soft tissue. So, radiation therapy using only MR image without CT scan is useful in the part like Head&Neck, partial breast and prostate cancer which has a little difference of heterogeneity.

  • PDF

Outlier Detection from High Sensitive Geiger Mode Imaging LIDAR Data retaining a High Outlier Ratio (높은 이상점 비율을 갖는 고감도 가이거모드 영상 라이다 데이터로부터 이상점 검출)

  • Kim, Seongjoon;Lee, Impyeong;Lee, Youngcheol;Jo, Minsik
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.573-586
    • /
    • 2012
  • Point clouds acquired by a LIDAR(Light Detection And Ranging, also LADAR) system often contain erroneous points called outliers seeming not to be on physical surfaces, which should be carefully detected and eliminated before further processing for applications. Particularly in case of LIDAR systems employing with a Gieger-mode array detector (GmFPA) of high sensitivity, the outlier ratio is significantly high, which makes existing algorithms often fail to detect the outliers from such a data set. In this paper, we propose a method to discriminate outliers from a point cloud with high outlier ratio acquired by a GmFPA LIDAR system. The underlying assumption of this method is that a meaningful targe surface occupy at least two adjacent pixels and the ranges from these pixels are similar. We applied the proposed method to simulated LIDAR data of different point density and outlier ratio and analyzed the performance according to different thresholds and data properties. Consequently, we found that the outlier detection probabilities are about 99% in most cases. We also confirmed that the proposed method is robust to data properties and less sensitive to the thresholds. The method will be effectively utilized for on-line realtime processing and post-processing of GmFPA LIDAR data.

A Multi-objective Ant Colony Optimization Algorithm for Real Time Intrusion Detection Routing in Sensor Network (센서 네트워크에서 실시간 침입탐지 라우팅을 위한 다목적 개미 군집 최적화 알고리즘)

  • Kang, Seung-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.5
    • /
    • pp.191-198
    • /
    • 2013
  • It is required to transmit data through shorter path between sensor and base node for real time intrusion detection in wireless sensor networks (WSN) with a mobile base node. Because minimum Wiener index spanning tree (MWST) based routing approach guarantees lower average hop count than that of minimum spanning tree (MST) based routing method in WSN, it is known that MWST based routing is appropriate for real time intrusion detection. However, the minimum Wiener index spanning tree problem which aims to find a spanning tree which has the minimum Wiener index from a given weighted graph was proved to be a NP-hard. And owing to its high dependency on certain nodes, minimum Wiener index tree based routing method has a shorter network lifetime than that of minimum spanning tree based routing method. In this paper, we propose a multi-objective ant colony optimization algorithm to tackle these problems, so that it can be used to detect intrusion in real time in wireless sensor networks with a mobile base node. And we compare the results of our proposed method with MST based routing and MWST based routing in respect to average hop count, network energy consumption and network lifetime by simulation.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

Design and Implementation of NMEA Multiplexer in the Optimized Queue (최적화된 큐에서의 NMEA 멀티플렉서의 설계 및 구현)

  • Kim Chang-Soo;Jung Sung-Hun;Yim Jae-Hong
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.91-96
    • /
    • 2005
  • The National Marine Electronics Association(NMEA) is nonprofit-making cooperation composed with manufacturers, distributors, wholesalers and educational institutions. We use the basic port of equipment in order to process the signal from NMEA signal using equipment. When we don't have enough one, we use the multi-port for processing. However, we need to have module development simulation which could multiplex and provide NMEA related signal that we could solve the problems in multi-port application and exclusive equipment generation for a number of signal. For now, we don't have any case or product using NMEA multiplexer so that we import expensive foreign equipment or embody NMEA signal transmission program like software, using multi-port. These have problems since we have to pay lots ci money and build separate processing part for every application programs. Besides, every equipment generating NMEA signal are from different manufactures and have different platform so that it could cause double waste and loss of recourse. For making up for it, I suggest the NMEA multiplexer embodiment, which could independently move by reliable process and high performance single hardware module, improve the memory efficiency of module by designing the optimized Queue, and keep having reliability for realtime communication among the equipment such as main input sensor equipment Gyrocompass, Echo-sound, and GPS.

The development of water circulation model based on quasi-realtime hydrological data for drought monitoring (수문학적 가뭄 모니터링을 위한 실적자료 기반 물순환 모델 개발)

  • Kim, Jin-Young;Kim, Jin-Guk;Kim, Jang-Gyeng;Chun, Gun-il;Kang, Shin-uk;Lee, Jeong-Ju;Nam, Woo-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.569-582
    • /
    • 2020
  • Recently, Korea has faced a change in the pattern of water use due to urbanization, which has caused difficulties in understanding the rainfall-runoff process and optimizing the allocation of available water resources. In this perspective, spatially downscaled analysis of the water balance is required for the efficient operation of water resources in the National Water Management Plan and the River Basin Water Resource Management Plan. However, the existing water balance analysis does not fully consider water circulation and availability in the basin, thus, the obtained results provide limited information in terms of decision making. This study aims at developing a novel water circulation analysis model that is designed to support a quasi-real-time assessment of water availability along the river. The water circulation model proposed in this study improved the problems that appear in the existing water balance analysis. More importantly, the results showed a significant improvement over the existing model, especially in the low flow simulation. The proposed modeling framework is expected to provide primary information for more realistic hydrological drought monitoring and drought countermeasures by providing streamflow information in quasi-real-time through a more accurate natural flow estimation approach with highly complex network.

Realtime Streamflow Prediction using Quantitative Precipitation Model Output (정량강수모의를 이용한 실시간 유출예측)

  • Kang, Boosik;Moon, Sujin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.579-587
    • /
    • 2010
  • The mid-range streamflow forecast was performed using NWP(Numerical Weather Prediction) provided by KMA. The NWP consists of RDAPS for 48-hour forecast and GDAPS for 240-hour forecast. To enhance the accuracy of the NWP, QPM to downscale the original NWP and Quantile Mapping to adjust the systematic biases were applied to the original NWP output. The applicability of the suggested streamflow prediction system which was verified in Geum River basin. In the system, the streamflow simulation was computed through the long-term continuous SSARR model with the rainfall prediction input transform to the format required by SSARR. The RQPM of the 2-day rainfall prediction results for the period of Jan. 1~Jun. 20, 2006, showed reasonable predictability that the total RQPM precipitation amounts to 89.7% of the observed precipitation. The streamflow forecast associated with 2-day RQPM followed the observed hydrograph pattern with high accuracy even though there occurred missing forecast and false alarm in some rainfall events. However, predictability decrease in downstream station, e.g. Gyuam was found because of the difficulties in parameter calibration of rainfall-runoff model for controlled streamflow and reliability deduction of rating curve at gauge station with large cross section area. The 10-day precipitation prediction using GQPM shows significantly underestimation for the peak and total amounts, which affects streamflow prediction clearly. The improvement of GDAPS forecast using post-processing seems to have limitation and there needs efforts of stabilization or reform for the original NWP.

Preliminary Study on Actuated Signal Control at Rural Area of Cheon-an City (천안시 외곽지역의 감응식 신호운영을 위한 기초연구)

  • Park, Soon-Yong;Kim, Dong-Nyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.52-63
    • /
    • 2009
  • Recently in Korea, in the case of metropolis, the urban signalized intersections are controlled by traffic information center or ITS center. Cheon-an City also established traffic information center through the 1st.-$\sim$3rd. ITS public construction and has managed this center that includes bus information service, traffic information collection and providing service, parking information service, and traffic responsive control system. In the Cheon-an metropolitan traffic signal operation, traffic signal controllers were grouped by the each main traffic flow axes and performed with coordinated signal timing for the signalized arterials, and also cycle and split changed by realtime traffic demands. Cheon-an urban traffic responsive control system was evaluated by intersection delay and speed, then it was verified that the delay decreased and vehicle speed improved. However, the rural signal control system to connect adjacency town was evaluated to have lower status than urban area due to the unimproved TOD (Time of day) plan. Therefore actuated signal control was examined for substitutive control system in isolated signal intersection. The aim of this article is to compare actuated signal control with TOD mode in the rural intersection of Cheon-an and to fine superiority of these two control mode, with evaluation of vehicle delay by using HCM(2000) method and by micro-simulation CORSlM. The result of field test show that actuated signal control gave better performance in delay comparison than the existing TOD signal control. And simulation outcome verified that non-optimized TOD has higher delay than optimized TOD mode, non-optimal actuated mode, and optimal actuated signal control mode. Particularly, these three modes delays had not different values according to the paired sample t-test. This is because small traffic demands were loaded in each links. This suggested actuated signal control is expected to be more effective than TOD mode in some rural isolated intersections which frequently need to survey for traffic volume.

  • PDF

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.